Quantification of Microplastics in Sea-salt using SWIR Hyperspectral Imaging

Hwanjo Jeong¹, Hoonsoo Lee¹*

¹ Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si, Chungbuk 28644, Korea

Introduction

- Since plastic was developed, consumption n has been steadily increasing, which ha s also had a significant impact on polluti on in the marine environment.
- Plastic entering the ocean undergoes ph ysical and chemical processes to produc e microplastics of 5mm or less in size.
- These microplastics are not decomposed by microorganisms, and after being eate n by marine organisms, adverse effects s uch as organ damage, nutrient reduction, lung function degradation, inflammatory reactions, and reproductive complication s were observed in the human body.
- Need to detect microplastics quickly and accurately.

Methods

Validation

No. of PCs Rv2

SEV

0.011

0.018

Prediction

0.999 0.014

0.999 0.012

0.999 0.011

0.998 0.019

0.999 0.014

Rp2

SEP

Calibration

<PLS result>

Rc2

Data pre-processing

Smoothing

MSC

SNV

Raw

Savitzky-

Golay

1st deri.

2nd deri.

Normalization Maximum 0.999

Objective

 The purpose of this study is to quickly detect and distinguish microplastics in sea salt using a SWIR hyperspectral imaging system.

Data Set

0.005% 100% 5%

Microplastic

 Polycarbonate(PC), Polyethylene(PE) ,Polystyrene (PS), Polyvinyl chloride (PVC), Polypropylene(PP). Teflon, Polyethylene terephthalate(PET), Fomex, Acrylic

Sea-salt

 1 type of Sea-salt produced in Sinan area on the market

Mixed sample manufacturing

- Using a shredder to crush plastic sa mples by 1mm or less
- Manufacturing concentration -0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%

Results

<Before apply optical model>

Conclusion

- The quantitative detection limit has been confirmed to be at least 1%, and the detection accuracy may vary depending on the depth of the sample holder and it affects the particle size of the salt, so additional research is needed.
- It is believed that near-infrared hyperspectral images can be used not only for the detection of microplastics in Sea-salt, but also for the qualitative and quantitative detection of microplastics in agricultural products and foods.
- Therefore, we could suggest that the SWIR hyperspectral imaging used potential to detect microplastic in sea salt

Future works

- Additional experiments using deep learning such as CNN and RNN will be performed.
- The optimal model will be found using other methods (VIS/NIR, Raman imageie, Raman Spectroscopy, etc.).