A methodology to predict the proton beam range from the scintillated light distribution using deep-learning

Eunho Lee1, Youngmoon Goh1, Byungchul Cho1, Jungwon Kwak1, Chiyoung Jeong1, Kyoungjun Yoon1, Min-Jae Park1, Sung-woo Kim1, Changhwan Kim1, Minsik Lee1, Jun-Bong Shin1, Seung Mo Hong1 and Si Yeol Song1

1Department of Radiation Oncology, Asan Medical Center, Seoul, Korea

Introduction

- For “small device” & “quick procedure” of proton beam range measurement, the scintillator light and CCD cam are used.
- To utilize all information of 2D scintillated light distribution, convolution neural network (CNN) method (light-to-dose conversion) is chosen.
- To verify the method for “light-to-dose conversion”, this study has been initiated.

Purpose

- This study aims to predict the proton beam range with the conversion of the scintillated light distribution into the proton depth-dose distribution.
- The feasibility of the methodology using Deep-Learning and Monte Carlo (MC) simulation was tested in this stage.

Materials & Methods

Scintillated lights & Dose from proton beam in MC

Training with Res-U-net modeling

Analysis of predicted dose-map with test dataset

Compare “predicted” vs “input” Bragg-peak position

Conversion Method: Deep-Learning

Modeling	2D Residual U-net with Tensorflow & Keras
Test Environment	MC simulation (TOPAS MC)
Input Image	Light map in the plastic scintillator (1.05 g/cm²)
Output Image	Depth-dose map in water
Datasets (100-200 MeV)	Training set: 201 (0.5 MeV step size)
	Test & Validation sets: 11 (10 MeV step size)

Results and Summary

Scintillated Light in MC

Depth-dose in MC & Prediction

Bragg-peak position (range)

100 MeV	7.69 ± 0.03 cm	Predict: 7.68 ± 0.03 cm
150 MeV	15.74 ± 0.02 cm	Predict: 15.74 ± 0.02 cm
200 MeV	25.81 ± 0.03 cm	Predict: 25.99 ± 0.03 cm

Deep-Learning (DL) Performance

- DL Bragg-peak accuracies analyzed from scintillated lights are less than 2 mm.
- DL Bragg-peak positions are NOT depending on the proton beam spot size less than 3 cm.
- Limitations:
 - Broad peak
 - Higher yield on middle region
 - Fluctuation in dose profile due to dataset size & small computational resources

Conclusion

- The DL methodology to analyze the scintillated light distribution for the proton beam range estimation is feasible in terms of the acceptable range accuracy.
- The fine-tuning of parameters and structure for DL model as well as the larger dataset would be need for the consistence with simulated results in future studies.

Contact

Youngmoon Goh (umipolaris@gmail.com)
This research was supported by the NRF grant funded by the Korea government (NRF-2019R1H1A1102039)