A methodology to predict the proton beam range from the scintillated light distribution using deep-learning

Eunho Lee¹, Youngmoon Goh¹, Byungchul Cho¹, Jungwon Kwak¹, Chiyoung Jeong¹, KyoungJun Yoon¹, Min-Jae Park¹, Sung-woo Kim¹, Changhwan Kim¹, Minsik Lee¹, Jun-Bong Shin¹, Seung Mo Hong¹ and Si Yeol Song¹ ¹⁾Department of Radiation Oncology, Asan Medical Center, Seoul, Korea

Contact

Youngmoon Goh (umipolaris@gmail.com)

• The DL methodology to analyze the scintillated light distribution for the proton beam range estimation is feasible in terms of the acceptable range accuracy.

• The fine-tuning of parameters and structure for DL model as well as the larger dataset would be need for the consistence with simulated results in future studies.

This research was supported by the NRF grant funded by the Korea government (NRF-2019R1H1A1102039)