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INTRODUCTION

Peptide detectability is defined as a probability of being observed in shotgun

proteomics, that includes both the possibility of the presence of peptide digested

in protein and whether the peptide is ionized and detected in LC-MS/MS.

Detectability can be used to reduce the size of the sequence database to be used

for peptide identification by database search, or can be useful for protein

inference. [1] Several computational approaches such as AP3

[2], DeepMSpeptide [3] and PepFormer [4] have been proposed to predict

peptide detectability via machine learning. DeepMSpeptide and PepFormer

predict the detectability through sequence embedding only by looking at the

peptide sequence. In contrast, AP3 focuses on the digestive process based on

the protein’s physicochemical properties and digestibility rather than sequential

embedding. Here we propose an end-to-end network model that can capture the

digestion process by considering enzymatic sites as input to enhance the

detectability prediction performance.

METHODS

Dataset
We used the massIVE-KB [5] archive to obtain peptides with confirmed tryptic

digestion sites, and proteins with a sequence coverage of 0.5 or higher to

confirm their existence and amenability to mass spectrometry. Among the

peptides in massIVE-KB, the detected peptides with a spectral count of 2 or more

were used as positive training data, and undetected peptides were used as

negative training data while allowing up to two missed cleavages in identified

proteins. All peptides were fully tryptic and their lengths were limited to 7-30. As

an input, a total of 15-mer was used, 7-mer around K and R, so that the protein

digestion site is positioned in the middle. AAindex [6] was adopted to reflect the

physicochemical properties of peptides. Table 1 and 2 show our datasets.

Multi input end-to-end network
We propose a multi-input end-to-end model with peptide sequences, tryptic site 

sequences, and physicochemical properties as input. The network first receives 

five inputs consisting of label encoded sequences and physicochemical 

properties. Sequence embedding dimensions are 32 and 16, respectively, and the 

embedded vector is used for bidirectional LSTM with 32 units. Finally, each input 

is concatenated with a fully connected layer of 80 dimensions. We used 300 for 

epoch, 128 for batch size, and 1e-4 for learning rate. Loss used binary cross 

entropy. Figure 1 shows our workflows.

RESULTS

Table 4. Performance of

State-of-the-Art Models for

peptide detectability

prediction.
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In this study, we presented a multi-input end-to-end network. For the first

time, considering that the protein digestion process was not well reflected

past, the sequence of peptides and tryptic sites was received as input in one

network. Our results showed that the model effectively predicts the peptide

detectability.
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Discriminator

Figure 1. Workflow of our model. Peptide sequence, tryptic sites of N, C terminal,

and miss cleavage, and AAindex are input respectively.

data set
proteins 

idedtified

peptides 

identified

proteins 

after filtration

peptides 

after filtration

massIVE-KB 19,291 506,605 11,707 485,857

data set number of  peptides

train 215,352

validation 53,838

test(holdout) 67,298

Table 1. number of identified proteins and peptides in massIVE-KB dataset. For protein

existence, we filter out proteins with sequence coverage 0.5.

Table 2. number of peptides in train,

validation, and test set. In the peptides after

filtration, we used only half of the data for

comparison with AP3, which requires

separate digestibility learning.

Models AUC ACC

AP3 0.875 0.790

DeepMSpeptide 0.871 0.809

PepFormer 0.906 0.832

ours 0.917 0.836

​​Table 3 describes the necessity of a multi-input network. AAAAAAAKVPAKKIT, a

15-mer tryptic site, corresponds to the area that should be digested as a C

terminal tryptic site for red and yellow peptides. However, in the case of peptide

identified with this 15-mer site as missed cleavage, such as green and blue, it

should not be digested. As can be seen in this example, even the same 15mer

tryptic site may or may not be digested depending on the peptide sequence.

Therefore, in order to capture the digestion process well and use it to predict

peptide detectability, the model should be constructed with multiple inputs rather

than learning digestibility separately.

Table4 shows that our model clearly performs better than other existing models.

Peptide
Tryptic site

of N-terminal

Tryptic site

of C-terminal

Tryptic site 1

of miss cleavage

Tryptic site 2

of miss cleavage

K.KAPGTKGTAAAAAAAAAAK.V ALLKASPKKAPGTKG AAAAAAAKVPAKKIT LLKASPKKAPGTKGT PKKAPGTKGTAAAAA

K.GTAAAAAAAAAAK.V PKKAPGTKGTAAAAA AAAAAAAKVPAKKIT - -

K.GTAAAAAAAAAAKVPAK.K PKKAPGTKGTAAAAA AAAKVPAKKITAASK AAAAAAAKVPAKKIT -

K.GTAAAAAAAAAAKVPAKK.I PKKAPGTKGTAAAAA AAKVPAKKITAASKK AAAAAAAKVPAKKIT AAAKVPAKKITAASK

Table 3. Example of sequence of peptides and tryptic sites. Spectral counts refer to the

number of times the spectrum of peptides that do not contain miss cleavage is observed

at each amino acid position. On the contrary, miss count is the case of including miss

cleavage.

P K K A P G T K G T A A A A A A A A A A K V P A K K I T

Spectral 

count
0 14 3 0 109 0 2 7 126 92 92 92 92 92 92 92 92 92 92 93 185 0 0 0 28 51 0 0

miss 

count
44 30 33 40 149 149 151 144 178 178 178 178 178 178 178 178 178 178 178 179 86 103 96 96 68 25 25 25


