A robust benchmark for evaluating and improving
mosaic variant detection
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Evaluation of mosaic variant calling strategies Evaluation of variant detection in paired samples

We selected nine mosaic detection strategies for evaluation on the criteria
of (1) algorithms that explicitly aim to detect mosaic mutations (2) proce-
dures that have been used previously to discover mosaic variants and (3) al-
gorithms that can be applied for mosaic mutation detection via simple modi-
fications. The nine strategies were classified into four major categories based
on their baseline algorithms: mosaic, somatic, germline, and ensemble.

ABSTRACT

The rapid advances in sequencing and analysis technologies have ena-
bled the accurate detection of diverse forms of genomic variants, including
germline, somatic, and mosaic mutations. However, unlike for the former
two mutations, the best practices for mosaic variant calling still remain
chaotic due to the technical and conceptual difficulties faced in evaluation.

In a sample pair, mosaic variants can exist either in
one or both samples, comprising a non-shared or
shared form. We evaluated nine strategies that could be
applied to detect shared mosaic variants in paired
samples. Our evaluation revealed complex relation-
ships among algorithms, strategies, and VAFs. With the
lack of optimal models, instead of a single winner, the
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Although MF-ts and MT2-ts marked the best F1-score, in general, other algo-

After conception, postzygotic mutations continuously occur throughout
life in humans, causing somatic mosaicism in an individual. The variant
type, time of origination, and locations of the mosaic mutations result in
unique mosaic patterns in a combinatorial manner and further affect phe-
notypes, including various noncancerous diseases.

Evaluated strategies

Mosaic category: MosaicHunter (MH), MosaicForecast (MF), and DeepMo-
saic (DM), which exploit Bayesian, Random-Forest, and deep-learning al-
gorithms, respectively.

Somatic category: Mutect2 (MT2)

rithms showed a better performance within particular VAF areas (left). Map-
ping these “local winners” into the VAF space rendered the current best
practice for integrating multiple strategies. Compared with the single
best performing strategy, an ensemble of the five strategies increased the
overall F-score from 0.89 to 0.96 (right).

The detection of mosaic mutations is an intricate process both concep-
tually and technically. For example, mutations occured in the develop-
mental process lead to a complex relationship among the affected and unaf-
fected tissues; mutations may or may not be shared between a pair of sam-

Germline category: HaplotypeCaller (HC) with ploidy 20 and 200 (HC20,
HC200)

Ensemble category: M2S2MH that consists of the combined use of three
different callers (MosaicHunter, Mutect2, and Strelka2)

RESULTS

Quality validation of positive and negative controls

Evaluation of the building blocks: features and filters

As variant calling algorithm is a decision process of selecting, calculating,
and organizing such features, feature-level evaluation provided fundamental
resources for developers. Using positive and negative calls, we evaluated for-
ty-eight features that have been used in four different mosaic detection algo-

rithms (MF, MT2, DM, and HC).
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This ambiguity is reflected in the disparate set of approaches applied in
recent studies, and these circumstances urgently demand a rigorous cata-
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struction of robust and biologically compatible reference standards is a pre- P o ative in further classifying the current false and positive calls (left). We also
0.91, p < 2.2e-16, respectively). w| |

tested the efficiency of the 16 independently adjustable filters used in MT2
and HC200 by disabling and comparing the changes in the call sets (right).
The contribution of the filters to the overall performance (F1-score) was lim-
ited (-0.002 to 0.038, mean = 0.003), implying that naive, single thresh-
old-based filtration is not an effective strategy for solving the mosaic variant
calling problem.

requisite.

METHODS

Construction of mosaic reference standards

We generated robust, large-scale, and cell line-based reference standards
using 386,613 single-nucleotide variants (SNVs) and insertion-deletion
mutations (INDELSs) as positive controls and 35,133,353 negative control
positions. By mixing the six normal cell lines (MRC5, RPE, CCD-18co,
HBEC30-KT, THLE-2, FHC) cumulatively, the unique germline variants rep-
resented mosaic variants in desired allele frequencies. The uniqueness of

A median of 10,202,428 positions with unexpect- :
ed alternative alleles was found in set A, which was 0| * -
approximately 30% of the total targeted regions in
ultra-high depth data (1100x). They had a wide range
of base quality (0 to 80), and artifacts were concen-
trated at VAF near 0.001, with a base quality of zero.
However, a notable number of artifacts was found
with high base quality, which are destructive in
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Additional strategies for mosaic variant calling
Call set and feature-level recombinations
Cross-reference of diverse features applied in multiple algorithms would
lead to a more fundamental improvement in the short-term. For example, in
indivoctl a single sample setting, MT2 showed high sen-
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could be removed while losing only a small fraction (1.6% and 3.9%) of true
positives, thereby further increasing the F1-score from 0.94 to 0.95 and from
0.18 to 0.29 for SNVs and INDELSs, respectively.
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Calling of mosaic variants is susceptible to two different types of errors:
(1) calling non-variant sites (e.g., reference allele) and (2) calling germline
variants. Therefore, we provided two different versions of the final
sets—set A and set B, containing non-variant sites and germline variants as
negative controls respectively.
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