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Cancer dynamics is highly complex that data from a single layer of omics does . )
Y Uy P Jie ay Power of Location Information

not give the complete information to study a phenotypic characteristics of a
We demonstrate the utility of our system through cases studies of

cancer type.
While transcriptomic and proteomic abundance carry crucial information of cell various scenarios. Guided by the guantitative difference metrics that
ALPACA provides, we were able to efficiently search through different

states, studies have found that the two omics often do not agree with each other.
combinations of cancers and pathways to narrow down on the potential

To better capture the biological context of interest, it is imperative to
comparatively analyze them in the context of protein localization and biological key proteins that can help explain the manifestation of a phenotypic
difference between two cancers.

pathway.

Although there are many data analysis tools for gene expression or protein #GTs (1 Location Filter(s), proteomics)
guantification data, none of them allows researchers to compare different
abundance data in the context of protein localization.

Methods: ALPACA

#GTs (4 Location Filter(s), proteomics)
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We present ALPACA (A Location-wise Proteome/transcriptome Abundance "o coon tomgmn G ume ownn oo
Comparative Analyzer) a visual data mining system that comparatively analyzes TS 3 fecation Tertl protesm <4 . e

transcriptomic and proteomic abundance data of different cancers in location-
wise and biological pathway-specific way.

Our system compartmentalizes the whole transcriptome and proteome
abundance and visually presents the discrepancies of different cancers using
subcellular locations and biological pathways as a filtering and sorting
mechanisms.

Such filtering and sorting adds biological context of interest to the data analysis ) - o
to aid the identification of potential biomarkers. ALPACA enables researchers

explore the vast search space of numerous cancer types and pathway :
combinations with little effort and time. “
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1. Rediscovery of Biomarkers
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Symbol Exprs(Basal) | _Exprs(LumB)

TP53 Endoplasmic Reticulum

Basal Cell Carcinoma

2.1846 0.1670

Largest discrepancy in E.R.: Overexpression of TP53 - TP53 implies
Its mutations. Known as a sign of poor prognosis. Supports the worst

prognosis of Basal Subtype.

1. Data Mining Guided by Difference Metrics

Gynaecological cancers.
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