A Supervised Markovian Random Walk Model for Investigating Hepatotoxicity Signatures of Chemical Drugs with Structural Alerts

Sangsoo Lim, Youngkuk Kim, Jeonghyeon Gu, 4, and Sun Kim^{1,2,3,4,5,*}

¹Bioinformatics Institute, ²Department of Computer Science and Engineering, ³Interdisciplinary Program in Artificial Intelligence, ⁴Institute of Engineering Research, Seoul National University, Seoul 08826, Korea, ⁵AIGENDRUG, LTD.

†Equal contribution

*Corresponding Author: sunkim.bioinfo@snu.ac.kr

Introduction

Motivation

- Drug-Induced Liver Injury (DILI) is a major hurdle in drug development.
- Underlying mechanisms of DILI are mostly veiled despite great efforts of in vivo and in vitro experimental procedures of clinical trials
- Currently available in silico methods neither show high performance nor suggest important chemical substructures

Object

- To develop a highly accurate DILI prediction method.
- To characterize important structural alerts (SAs)

DILI Data Sets

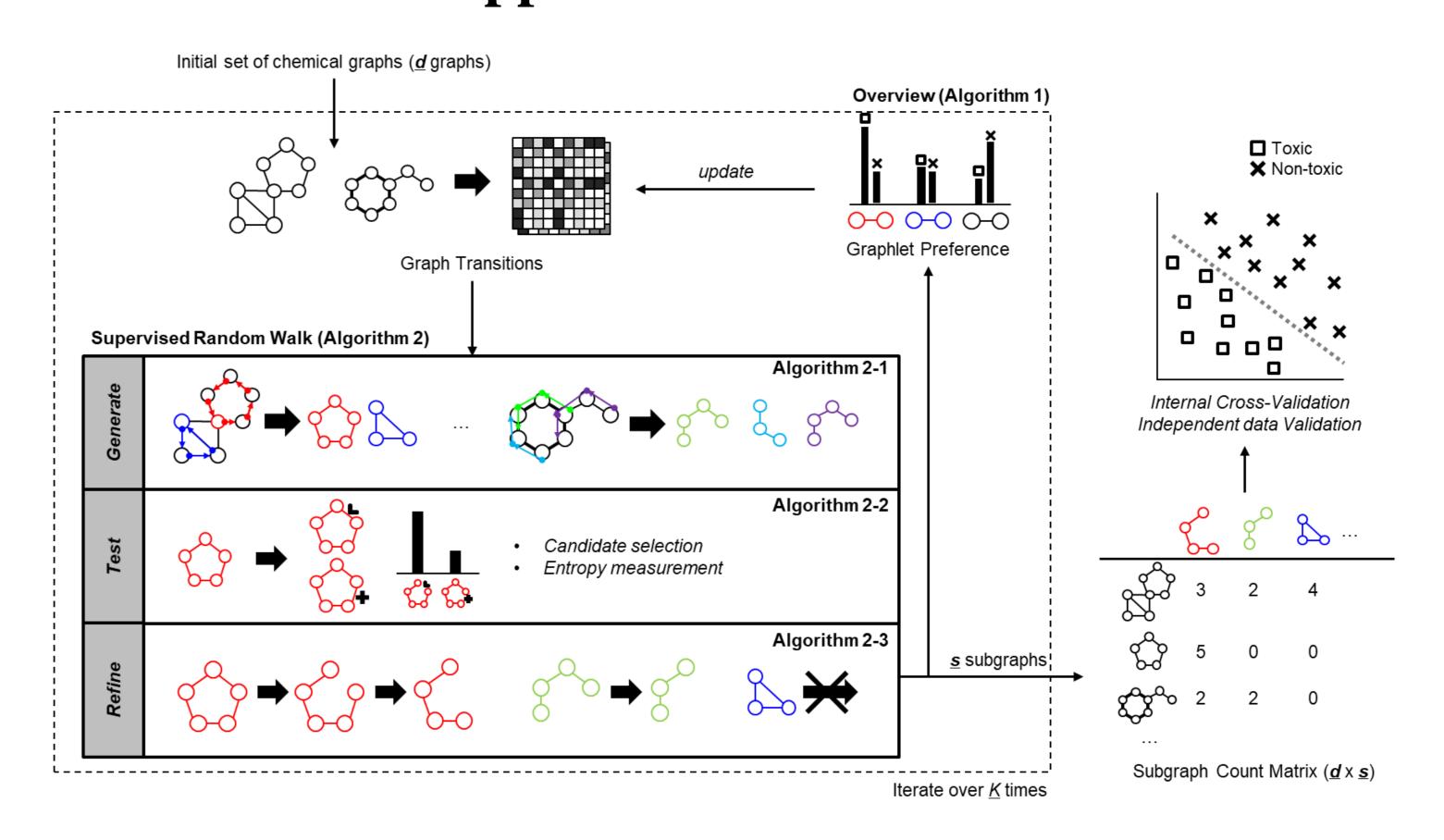
DILI data

- Most data sets were retrieved from *JCIM*, 2015¹
- DILIst data from US FDA was also used as training data²

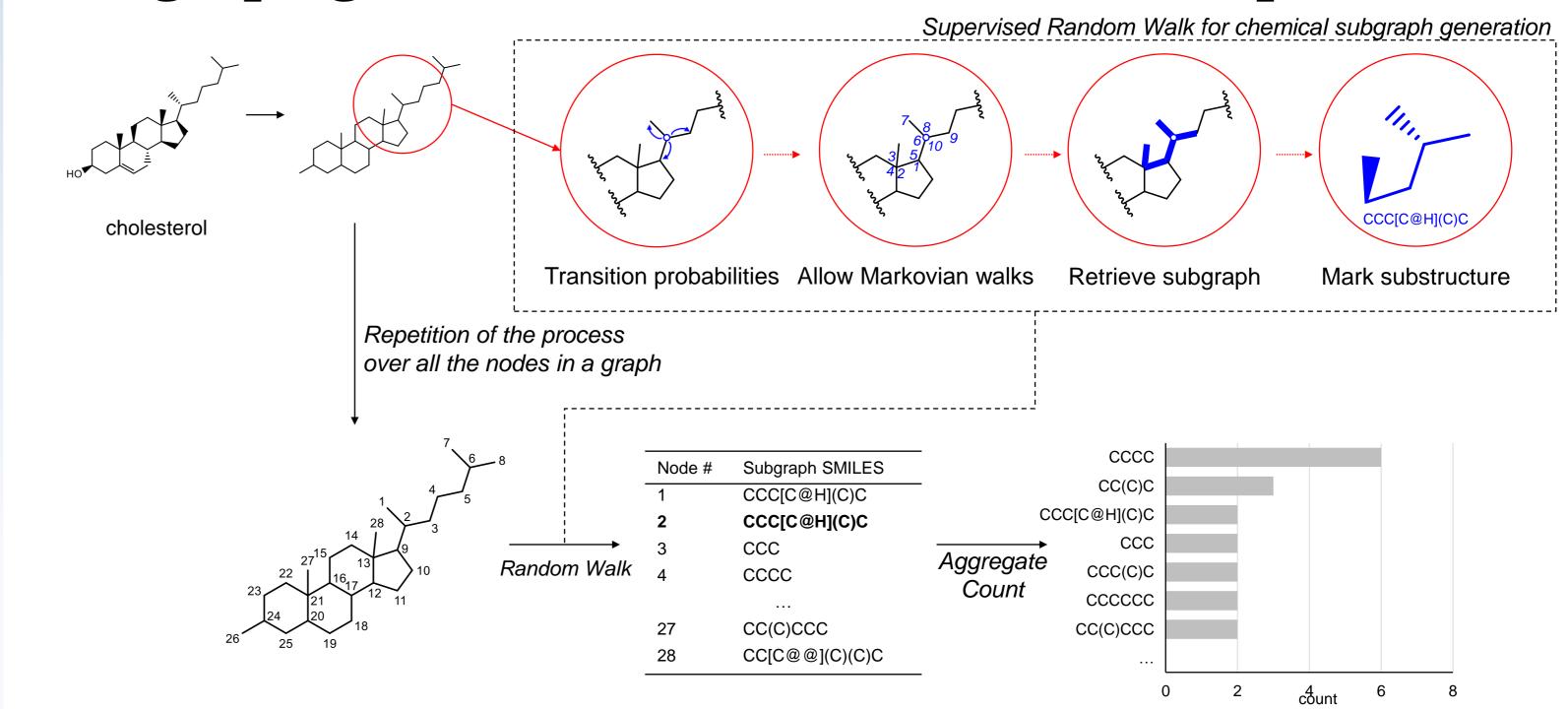
0-1	Name	Class labels		Tatal										
Category		Toxic	Non-Toxic	Total	N									
Training	NCTR	78	102	180	С	0.38								
	Combined	232	228	460	L	0.1	0.23							
	Liew	648	417	1,065	D	0.13	0.32	0.38						
	DILIst	720	438	1,158	N	0.01	0.24	0.09	0.13					
Validation	NCTR	97	87	181	С	0.01	0.04	0.1	0.14	0.25				
	Combined	113	83	196	L	0.03	0.05	0	0.06	0.03	0.04			
	Liew	70	49	119	G	0	0.33	0.15	0.23	0.2	0.37	0.05		
	Greene	208	109	317	Х	0	0.26	0.12	0.16	0.17	0.3	0.04	0.49	
	Xu	127	106	233		N	c trair	L	D	N	С	L alidatio	G	Х

Methods

Overview of our approach



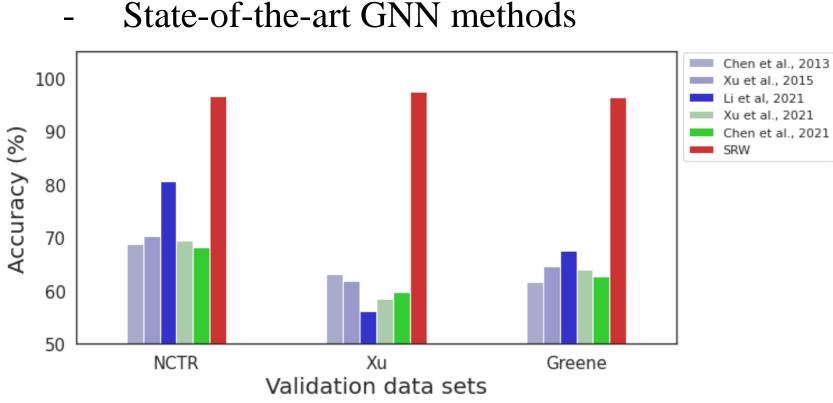
Subgraph generation: cholesterol as an example



Results

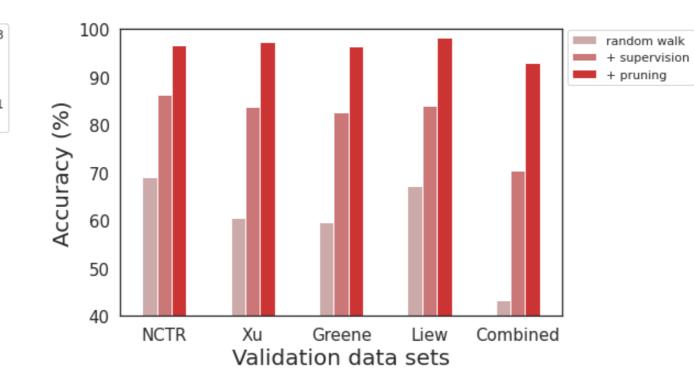
1. Performance: significant improvement in accuracy

- Comparison to previous methods:
 - DILI prediction tools
 - State-of-the-art GNN methods



improve the performance

Supervision and pruning highly



random walk 0.9 Accura

without pruning

1 2 3 4 5 6 7 8 9 1015203050

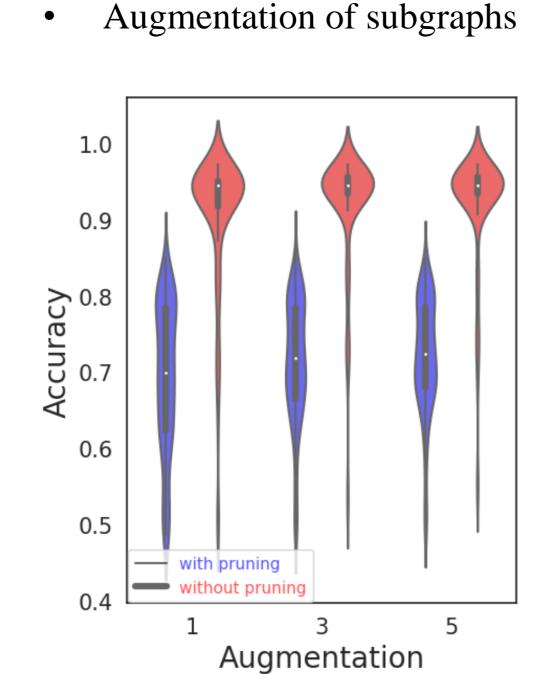
Random walk length

Varying the length of

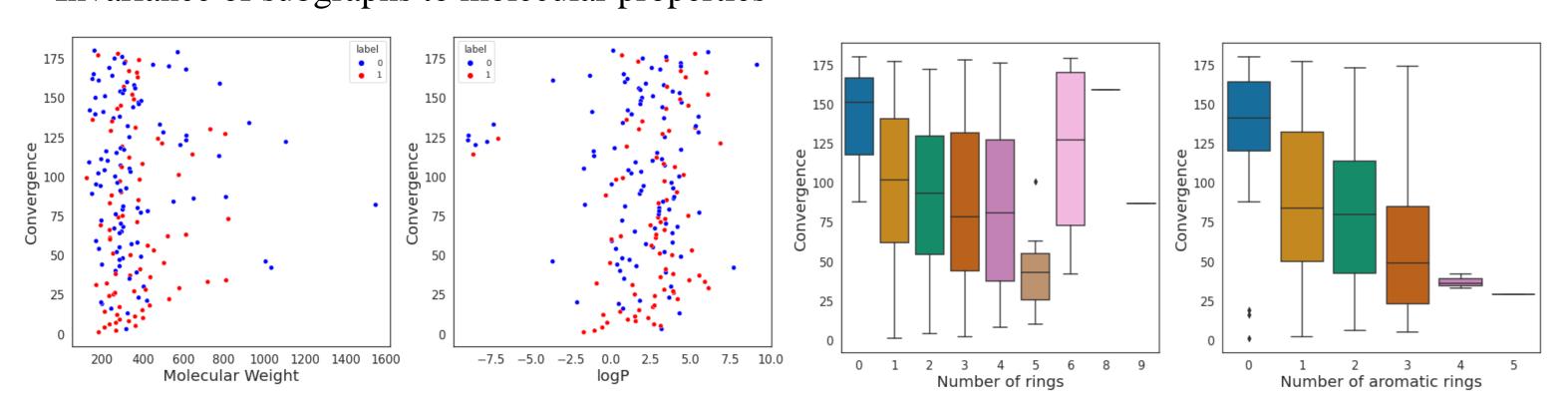
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Transition Update Rate

Varying the rate of

updating graph transitions

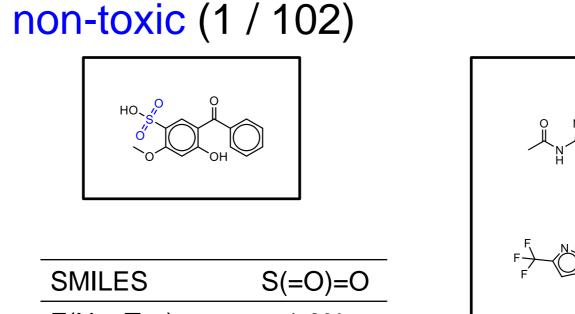


Invariance of subgraphs to molecular properties



2. Identification of structural alerts (SAs) of DILI

Example SA 'S(=O)=O' over-represented in toxic drugs



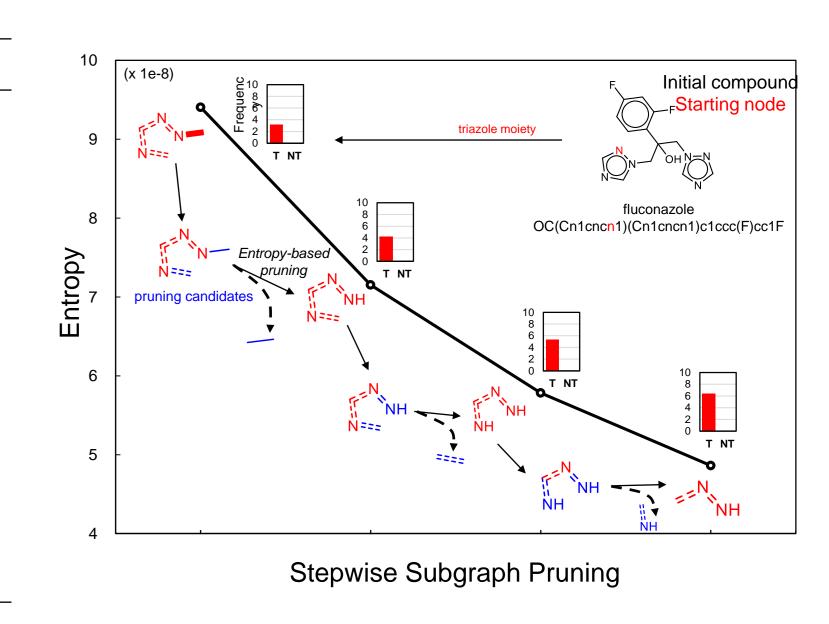
S(=O)=O
1.0%
11.5%
0.396

toxic (9 / 78)

Top 10 SAs enriched to toxic drugs

Pruning subgraphs

1			\mathcal{C}				
Subgraph	Trainin	ıg data	Validation data				
(SMILES)	F(NT)	F(T)	F(NT)	F(T)			
cNcc		0.090	0.011	0.064			
cNc		0.090	0.011	0.064			
NS=O		0.077	0.034	0.106			
Cco		0.064	-	0.074			
C=NN		0.051	-	-			
cCS	-	0.038	-	0.021			
nCO		0.038	0.034	0.085			
cnCO		0.038	0.034	0.085			
CNO		0.026	0.011	0.011			
C#N		0.026	0.023	0.011			
			•				



References

- Xu, Youjun, et al. "Deep learning for drug-induced liver injury." Journal of chemical information and modeling 55.10 (2015): 2085-2093.
- Thakkar, Shraddha, et al. "Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity." Drug discovery today 25.1 (2020): 201-208. Chen, Minjun, et al. "Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs." toxicological
- Xu, Minghao, et al. "Self-supervised Graph-level Representation Learning with Local and Global Structure." arXiv preprint arXiv:2106.04113 (2021). Chen, Fangying, Junyoung Park, and Jinkyoo Park. "A Hypergraph Convolutional Neural Network for Molecular Properties Prediction using Functional Group." arXiv preprint arXiv:2106.01028 (2021)
- Backstrom, Lars, and Jure Leskovec. "Supervised random walks: predicting and recommending links in social networks." Proceedings of the fourth ACM international conference on Web search and data mining.