Ildentification of cellular senescence signatures for classifying
senescence status based on machine learning approaches
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= \We identified 17 cellular senescence signature genes based on meta-analysis and ML-approaches.

= Total 192 of cellular senescence expression data as Fastq files of RNA-seq were collected from ENA- > Those signature genes are related to senescence pathways such as telomere, cell cycle, immune
EBI database. All samples were processed with in-built salmon pipeline, which consists of quality response, chromatin assembly, DNA damage, and SASP.

control, trimming, mapping, quantifying, and batch-correction steps. Data were divided into training set | | . pc A results on test set prove that our signature genes can discriminate cellular senescence with
and test sets. Test set 1 consists of 80 fibroblasts and test set 2 of 33 samples with various cell types oroliferating control samples regardless of its inducer type
such as Mesenchymal stem cells, endothelial cells, and liposarcoma. Samples were categorized by = SVM prediction model of our 17 signatures outperformed.other four models from various studies
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= Differential expression (DE) analysis between controls samples and various inducers in training sets ;’Vh'tCh ?goxa%theoaggos’[ perfect performance regardless of cell types in test set 1: AUC = 1.0 and
est set 2: = 0.98.

were performed using edgeR 3.10. DE genes were filtered by adjusted p-value (<0.05) and log2 fold !
change (log,FC >1 or log,FC < -1). Among inducer specific DE genes, common 465 genes across all = \We offered these 17 signature genes as core characters of cellular senescence.

types of senescence inducers were selected for further analysis. Ref
= TMM normalized and log transformed expression values of filtered 465 genes were used for lasso ererences

regression. Final 17 genes were selected by lasso (gimnet, v4.1-1), and gene ontology analysis on 17 | |- Hernandez-Segura, Alejandra, et al. Unmasking transcriptional heterogeneity in senescent
genes was performed with gproﬂlerZ v.Q.2.1. - cells. Current Biology, 2017, 27.17: 2652-2660. e4.

> Principal component analysis (PCA) with 14,037 genes atter filtering lowly expressed genes and 17 | |_ Casella, Gabriel, et al. Transcriptome signature of cellular senescence. Nucleic acids research,
lasso selected genes on test set were plotted respectively by stats v3.6.2 and factoextra v1.0.7. 2019. 47 14: 7294-7305

= SVM model (e71071, v1.7-6) for cellular senescence prediction was built with 17 genes, as well as Park H Suk. et al. Endothelial cell sen hce- A machine learnina-based meta-analvsis of
various pre-defined four senescence gene sets from different studies. Model performance on test sets - Fark, Fyun ouk, et al. Endothelial cell senescence. acnine learning-nase - y

was compared by ROC curves (ROCR, v1.0-11). transcriptomic studies. Aging research reviews 65, 2021, 65.
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