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Identification of cellular senescence signatures for classifying 
senescence status based on machine learning approaches 
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Materials & Methods

▻ Non-zero coefficients of lasso selected 17 genes

Conclusions
▻ We identified 17 cellular senescence signature genes based on meta-analysis and ML-approaches.
▻ Those signature genes are related to senescence pathways such as telomere, cell cycle, immune
response, chromatin assembly, DNA damage, and SASP.

▻ PCA results on test set prove that our signature genes can discriminate cellular senescence with
proliferating control samples regardless of its inducer type.

▻ SVM prediction model of our 17 signatures outperformed other four models from various studies,
which showed the almost perfect performance regardless of cell types in test set 1: AUC = 1.0 and
test set 2: AUC = 0.98.

▻We offered these 17 signature genes as core characters of cellular senescence.
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▻ Total 192 of cellular senescence expression data as Fastq files of RNA-seq were collected from ENA-
EBI database. All samples were processed with in-built salmon pipeline, which consists of quality
control, trimming, mapping, quantifying, and batch-correction steps. Data were divided into training set
and test sets. Test set 1 consists of 80 fibroblasts and test set 2 of 33 samples with various cell types
such as Mesenchymal stem cells, endothelial cells, and liposarcoma. Samples were categorized by
their senescence inducer types.

▻ Differential expression (DE) analysis between controls samples and various inducers in training sets
were performed using edgeR 3.10. DE genes were filtered by adjusted p-value (<0.05) and log2 fold
change (log2FC >1 or log2FC < -1). Among inducer specific DE genes, common 465 genes across all
types of senescence inducers were selected for further analysis.

▻ TMM normalized and log transformed expression values of filtered 465 genes were used for lasso
regression. Final 17 genes were selected by lasso (glmnet, v4.1-1), and gene ontology analysis on 17
genes was performed with gprofiler2 v.0.2.1.

▻ Principal component analysis (PCA) with 14,037 genes after filtering lowly expressed genes and 17
lasso selected genes on test set were plotted respectively by stats v3.6.2 and factoextra v1.0.7.

▻ SVM model (e1071, v1.7-6) for cellular senescence prediction was built with 17 genes, as well as
various pre-defined four senescence gene sets from different studies. Model performance on test sets
was compared by ROC curves (ROCR, v1.0-11).

Cellular senescence is a permanent cell-cycle arrest which prevents damaged cells from unusual
proliferation. By the secretion of senescence-associated secretory phenotype factors, senescent
cells affect various age-related diseases including cancers. Selective elimination of senescent cells,
named as ‘senolysis’, has emerged as a potential therapeutic method for various diseases. However,
since senescent cells possess heterogeneous features according to cell types or senescence
inducers, it was difficult to identify the senolysis markers. Therefore, we collected raw 192 samples
of RNA-seq data in various human senescence cells by various inducers such as replicative
senescence, oncogene induced senescence, and therapy induced senescence from different
experiments to find out consensus features of cellular senescence regardless of inducer types or cell
types. Meta-analysis was conducted to raise statistical power and machine learning approaches
such as lasso and support vector machine were used for selecting representative features of cellular
senescence and for the construction of senescence classification model with selected features. Our
model can discriminate senescent samples from non-senescent samples regardless of their inducer
types with great performance. Moreover, our model was also able to discriminate various
senescence cell types, compared to other senescence gene sets from various studies. As a result,
we offered these 17 signature genes as core characters of cellular senescence.

Cellular senescence is irreversible cell cycle arrest
triggered by stressful insults or processes,
characterized by senescence-associated secretory
phenotype (SASP), macromolecular damage, and
altered metabolism. It arises in response to diverse
triggers including telomere attrition, macromolecular
damage and signaling from activated oncogenes,
sharing different traits according to its inducers.
Recent findings revealed that senescent cell is a
contributor to aging and age-related diseases.
Senolysis, selective elimination of senescent cells,
has been emerged as an effective therapy for the
treatment of age-related diseases including cancers
when combined with pre-existing therapies. However,
pre-existing senescence markers differ by cell types
or inducer types of senescent cells, making it difficult
for researchers to define consensus markers for
cellular senescence. Therefore, it is necessary to find
characteristic markers for cellular senescence,
regardless of their heterogeneous types.

Senescent cell features 
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▻ Principal component analysis on Test set

▻ Prediction performance for senescent cell in several models
Model performance comparison on test set 2 (n=33, various cell types)Model performance comparison on test set 1 (n=80, fibroblasts)

Group Cell type Controls Replicative OIS TIS Total
Training Fibroblasts 37 13 15 14 79
Test 1 Fibroblasts 32 13 24 9 80
Test 2 Other cell types 15 7 - 11 33
Total - 73 28 41 23 192

PCA plot of test set 1 (n=80, fibroblasts) with filtered 14,037 genes PCA plot of test set 1 (n=80, fibroblasts) with selected 17 genes

▻ Enriched GO terms in selected 17 genes

▻ Salmon pipeline and workflow of the analysis

Table 1. Group and cell type for samples

RS : Replicative senescence
OIS : Oncogene-induced senescence
TIS : Therapy-induced senescence


