Leveraging hierarchical tree data as guide for random walk on heterogeneous network for drug repurposing

Dongmin Bang¹, Sangsoo Lim² and Sun Kim^{1,3,4,*}

¹Interdisciplinary Program in Bioinformatics, Seoul National University

²BioInformatics Institute, Seoul National University

³Department of Computer Science and Engineering, Seoul National University

⁴AlgenDrug, Co., Ltd

Background

- To solve the problem of escalating cost and time required for new drug development, drug repurposing drew attention as a new paradigm. Drug repurposing focuses on using 'old' drugs to treat both common and rare diseases outside the scope of the original indication.
- Various tools leverage large-scale heterogeneous biomedical network for drugrepurposing.
 - I. Classical machine learning-based method: Degree Weighted Path Count
 - II. word2vec-based method : edge2vec
 - III. Network propagation-based method: multiscale-interactome
 - IV. Graph Convolutional Neural Network : LAGCN

Motivation

- Handling heterogeneous biomedical network is a very difficult and yet unsolved problem. There exists two major challenges for current drug repositioning tools:
 - I. Most of the existing node embedding tools do not consider multiple node-t ype and edge-type features of biomedical network.
 - II. Biomedical networks are highly biased to genes and gene-gene interactions , which cover up to 81% of nodes and 89% of edges of the whole network.
- To handle these challenges, we introduce a new concept for guiding random wal ker with biological prior knowledge when generating sequences of nodes prior to node-embedding generation.
 - I. Teleportation, a concept borrowed from Google's PageRank algorithm[1], g uides random walker to teleport to a hierarchically similar compound and d isease, instead of randomly following the network topology. the pathway a nd the context.

Method

- As illustrated in Figure 1, 'RandomTeleporter' consists of three modules: Telepor t-guided random walk, Skip-gram model, and logistic regression for link prediction. After training, model predicts the treatment probability of a given drug-disease pair.
- We implemented "RandomTeleporter" by integrating word2vec model with tele portation from PageRank algorithm and edge type-transition matrix from edge2v ec model[2].
 - I. Edge-type transition matrix is trained before the random-walk process, whi ch implies edge-type distribution of the heterogeneous network. The rando m walker then chooses the next edge-type according to the prior edge-type and its transition matrix.
 - II. Teleportation occurs when random walker arrives at any disease or drug no de, following the user-given teleportation probability. Our model teleports the walker to a hierarchically similar drug/disease node, rather than any oth er random node.
- After performing knowledge-guided random walk, node sequences are then pass ed onto the famous skip-gram model for node embedding generation.
- Finally, two embedded nodes, each from drug and disease, are subtracted and the outcome vector is used as input for logistic classifier which performs binary classification and outputs a treatment probability score.

Figure 1. Workflow of RandomTeleport

Results

- 4 Datasets are used to evalutate the performance of "RandomTeleport".
 - Hetio Network (Hetio), Multi-scale interactome (MSI), The Comparative Toxic ogenomics Database (CTD), Kyoto Encyclopedia of Genes and Genomes (KEG G)
- For comparison, word2vec and edge2vec model were used as baseline.

Evaluation of prediction performance

- To compare with other drug repurposing tools, we select two tools from four cat egories introduced in Background.
- Proposed model, "RandomTeleport" outperformed other models in three of the four dataset in accuracy, AUROC, AUPR and F1 score of the predicted drug-disea se treatment pair (Figure 2, Table 1).

Figure 2. Accuracy, AUROC, AUPR and F1 score of each model on 4 datasets (Hetio, MSI, KEGG, CTD). Proposed model, shown in red, outperformed others in three of four datasets.

	Hetio	MSI	KEGG	CTD
word2vec	0.65	0.57	0.71	0.79
edge2vec	0.75	0.65	0.80	0.70
proposed	0.84	0.68	0.82	0.68

Table 1. Accuracy of three drug repurposing models in 4 datasets

Visualization of constructed embedding spaces

- For learning an embedding space consisting of multiple node types, in contrast to baseline word2vec model (Figure 3(a)), proposed model (Figure 3(b)) showed well-clustered and well-separated embedding space according to node's node type (Disease, Compound)
 - Dimension Reduction : Principal Component Analysis (PCA), t-Stochastic Nei ghbor Embedding (t-SNE)

Figure 3. Visualization of embedding space constructed by each model. (a) Embedding space constructed by word2vec model. (b) Embe dding space constructed by proposed model, "RandomTeleport"

Conclusion

- By guiding random walk process with tree-structured hierarchy data as teleport probability, the walker generates more biologically meaningful node sequences, enabling efficient node embedding and, in the end, a higher performance in dise ase-drug link prediction task.
- Technical contribution lies in providing a methology for utilizing tree-structured hierarchy data for guiding machine learning tasks. In RandomTeleporter model, e ach drug/disease nodes

References

[1] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. *Computer networks and ISDN systems*, 30(1-7):107–117 (1998)

[2] Gao, Z., Fu, G., Ouyang, C. *et al.* edge2vec: Representation learning using edge semantics for biomedical knowledge discovery. *BMC Bioinformatics* 20, 306 (2019).