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Abstract
   Single-cell RNA sequencing (scRNA-seq) has become a critical technology for unraveling the complex cellular heterogeneity within a tissue. While drop-
let-based microfluidics system is currently most widely used among many such methodologies, a typical artifact called ‘doublets’, where two cells are caught in the same 
droplet, should be successfully identified and removed in downstream analysis to obtain unbiased results. Conversely, some recent studies utilized the innate interactions 
between those ‘physically interacting cells (PICs)’ and obtained spatial information from them. Here, we introduce a computational analysis pipeline to infer potential cell-cell 
interactions from scRNA-seq data. In this pipeline, for every putative cell-type pair which are forming heterotypic doublets that are computationally detected, the observed 
rate of doublets comprised of corresponding cell-types is compared to the expected doublet rate of them. This signal-to-noise ratio with confidence-intervals was utilized to 
infer the interactions between the two cell-types. We evaluated this method over simulated doublets as well as biological samples from fly blood and multiple myeloma pa-
tients, detecting immune-cell interactions with a statistical significance in scRNA-seq data. We believe our research can help gain further insight into biologically meaningful 
cell-cell interactions in diverse conditions and diseases.
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Results

Methods

• Putative singlets are obtained through 
processing of raw scRNA-seq data.
• Doublets detected from raw data are 
filtered based on the threshold which is 
calculated by simulation of artificial het-
erotypic doublets using singlets.
• Identify cell-types composing each of 
these doublets (Deconvolution).
• Compare the expected and observed 
doublet frequency using signal-to-noise 
ratio with confidence-intervals of all 
possible combinations of two cell-types.

In order to generate reference-set (singlets) of doublet analysis, scRNA-seq data 
from circulation bloods in wasp-infested fly larvae and bone marrow(BM) of multiple 
myeloma(MM) patient were analyzed using Seurat. Putative singlets were obtained 
and clustered. UMAP and cell-type proportions of fly bloods data are represented in 
(A) and (B), respectively. (C) and (D) are those for the MM BM data.  
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Comparison of expected and observed doublet frequencies  Figure 3.  
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 Scatter plot for doublet frequency of Drosophila data
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 Scatter plot for doublet frequency of MM data

Detected doublets are filtered based on the optimal threshold for posterior probabili-
ties of doublet prediction, calculated from results of 100 times of heterotypic doublet 
simulations. ROC curves of all these simulations and doublet deconvolution results 
are in the left and right side of (A) for fly bloods data and (B) for MM BM data, respec-

(A) is scatter plot of expected and observed doublet frequency of fly bloods data, and 
(B) is for MM BM data. The shaded area of each plot represents the 90% confidence in-
terval for the regression line. 
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• Potential heterotypic cell-cell interactions can be identified through this analysis pipeline  
which rely soley on computational analysis of expression matrix.
• Using mildly-dissociated CITE-seq data could be a suitable way to validate this pipeline.
• Accuracy of our method depends on performances of doublet detection and deconvolution 
algorithms. 

Computational analysis pipeline

* Data source : Nature Comm. Cho et al., 2020¹ 
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