Multi-Omics enrichment pathway score analysis

Jaemin Jeon?t, Inuk Jung®
1School of Computer Science and Engineering, Kyungpook National University, Daegu

Backgrounc

.. . T : . : : Among the TCGA data, 94 clinical data according to nine cancer types.
Pathway analysis Is used in summarizing individual biological mechanisms in (COAD,STAD. LUAD,BRCA UCEC, HNSC.PRAD. THCA KIRC).

Interpretable pathway unit. Pathway Is group of genes that are related to each For pathway data, we used KEGG database(340 pathways)
biological mechanism. In human disease, difference of gene expression is 14,464 genes are used and mRNA, miRNA, methylation-level omics are used
measured and various omics are involved. Because of large scale of biological

system, single omics is limited to explain complex system. This study helps to Cl Ficati It
interpret individual patients’ diseases in pathway units with multi-omics. asslfication resu

F1-score comparison with other method.
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Most of pathway analysis is limited in using single omics. There are not many
methods to see a single sample , and there are few cases where clinical data is
used In pathway analysis.
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Proposed Method

We used three omics(mRNA, methylation level, mIRNA). To mix up multi- omics
data we used tensor decomposition. Because of different number of each omics,
we changed all of omics to gene-centric to overcome dimension difference.
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GMT: Gene Matrix Transposed file format
GE: Gene expression

ME: Methylation

MI: miRNA expression

Using decomposed sample, gene, omics matrix, we calculated Enrichment

score and Omics contribution with multiplying. In Enrichment score , K-S | | e
random statistic Is used. We can make multi-omics network or survival analysis omi bi . £
with these. MICS combination perrormance
Input data F1-score according to the combination of omics used. To show multi-omics is better
/ \ than using single omics for classification we compared with combination of omics.
/ Features \ As below figure, we can see using all of omics made better performance than using 2 or 1
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> % % g 5 EL%+ + )+ iterations. MOPA_ALL method is not using labeled data which means unsupervised method.
sample [T Er' 7 7 7 @ 0 We considered when we don't have labeled data and we must use unclassified data. However
Gene rank tensor o G @) as we can see MOPA _ALL method had similar performance when we compare with MOPA. We
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Use Cases ‘
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