

Effect of Heat Treatment on Magnetic Properties of Fe-based Amorphous Alloys

Melt Spinning

Jihye Park¹*, Hyunsol Son¹, Haein Choi-Yim¹[†]

¹Department of Physics, Sookmyung Women's University, Seoul 04310, South Korea

INTRODUCTION

EXPERIMENTS

Object Research the magnetic properties of Fe-Co-B-P-Cu amorphous ribbons by giving variations on heat treatment conditions.

Research

Fe-based amorphous alloys are advantageous for industrial applications due

Fabrication of amorphous ribbons

Arc Melting

to their outstanding soft magnetic properties: high saturation flux density(B_s), low coercivity(H_c), and high permeability.

- Particularly, Fe-Co system exhibits high saturation flux density compared to Fe-only systems.
- When amorphous alloys fabricated by rapid solidification method are crystallized at an appropriate temperature, it becomes nanocrystalline alloys with tiny grains.
- Nanocrystalline materials are well known for their high saturation flux density and low coercivity, which leads to high permeability in comparison with Fe-based amorphous alloys.

RESULT & DISCUSSION

Heat treatment

Amorphous ribbons are annealed for 10min at appropriate temperatures.

Analyze

Specimen's structural, thermal, and magnetic properties were examined by XRD, DSC, and VSM, respectively.

Vibrating Sample Magnetometer (VSM)

Differential Scanning Calorimeter (DSC)

Fig. 1 DSC curves for as cast Fe-Co-B-P-Cu alloys. The arrows mark the onset temperatures of crystallization, i.e. T_{x1} and T_{x2}

X-ray Diffraction Patterns (XRD)

360 1.75 2.93 lagneti - as cast 1.95 3.02 400 - 360°C -100 FCBPCu 15 -400°C 440 1.88 2.81 annealed for 10min -440°C -480°C -200 480 1.88 5.93 10000 -5000 -10000 5000 Applied Field (Oe)

Fig. 3 Hysteresis loop for FCBPCu 15 alloy annealed at following temperatures.

Tendencies of Magnetic Properties

 30
 40
 50
 60
 70
 80
 20
 30
 40
 50
 60
 70
 80
 90
 100

 2 Theta (deg.)

 Fig. 2 XRD patterns of a) as cast and b) annealed FCBPCu 15 alloy taken at free

surface of the ribbon.

Fig. 4 Saturation Magnetic Flux Density(B_s) and Coercivity(H_c) as a function of annealing temperature.

SUMMARY

- * Based on the DSC curve, the onset of primary crystallization is about $T_{x1} \approx 360^{\circ}$ C for all alloys, while the secondary crystallization temperature T_{x2} slightly increases with Co content. (see Fig. 1)
- * The temperature interval between T_{x1} and T_{x2} enlarges from 147°C to 165°C with the introduction of Co content, which means favorable for promoting the homogeneous α -Fe precipitates as well as excellent thermal ability.
- * As can be seen from Fig. 2, the as cast ribbons are in the amorphous state. After annealing above the primary crystallization temperature, a bcc α -Fe phase is formed. When the annealing temperature is close to the second crystallization temperature, precipitation of Fe₃B phase occurs, which deteriorates the soft magnetic properties.
- * Both Saturation magnetic flux density and Coercivity increase with annealing temperature for all investigated alloys.
- Saturation flux density reaches a maximum value of about $B_s = 2.02$ T for FCBPCu 8 alloy.