
Understanding Resource Usage of NoSQL Databases Through System call Trace

Changho Seo, Yunchang Chae, Jaeryun Lee, Euiseong Seo*, and Byungchul Tak

Kyungpook National University, *Sungkyunkwan University

[changho.seo, cyc, jrlee, bctak]@knu.ac.kr, *euiseong@skku.ac.kr

Abstract

NoSQL databases have quickly become an indispensable component for big data processing and AI applications. However, it

is very challenging to select the best NoSQL database that fits the performance and scalability requirements of the big data

and AI application at hand. To address these challenges, we investigate the feasibility of the approach that tries to build

accurate resource consumption models of NoSQL databases from low-level system call information. Accurate resource

consumption models would enable us to reason about the expected performance and the scalability capacities for given

workloads and hardware specifications. Our study reveals that NoSQL databases exhibit unique resource consumption behaviors

even for functionally the same operations. Also, we verify that it is feasible to build accurate resource consumption models with

only a small number of experiments.

Ⅰ. Introduction

NoSQL databases are established as the essential component for big

data and AI applications. Selecting the right NoSQL database as the

backend storage for the big data and AI is critical for the performance

and efficiency. However, it is challenging to select the most fitting one

for the type of applications to be run. Static information, such as

software features or capabilities from various document sources can

provide only the general information. Key information about the actual

performance characteristics and scalability under the expected

workloads are not easily derivable from such documentations.

Performance benchmarking is one way to build performance models

and infer the scalability [1], [2]. Unfortunately, these black-box

methods have several shortcomings. Benchmarking approaches can

cover only a fraction of vast search space made of workload types,

configurations, and environment preferences. Furthermore, it is

difficult to explain the observed performance outcomes and reason for

various scenarios, such as different workload intensity and mix.

In this work, we address these challenges by investigating the gray

box techniques for building accurate resource consumption models of

NoSQL databases. We use system call activities directly related to the

resource consumption such as read, write, send, recv and futex system

calls. These system calls decorated with CPU cycles, memory

bandwidth, and I/O byte accounting information from the basis of our

resource model.

In our grey-box technique, system call-level information is used

because they offer several advantages. First, developing a technique

does not require us to have application-specific knowledge such as

internal function descriptions or software architecture. Second, system

calls directly provide I/O resource accounting data through return

values. Third, source code is not required since we do not intend to

instrument the code. Lastly, the amount of traced data we need to

process is significantly less than those of function-level or

instruction-level traces.

We were able to develop a set of novel algorithms to handle all

challenges mentioned above and built the desired resource

consumption models of three key operations (insert, select, delete) for

Redis, Memcached and MongoDB NoSQL databases.

Ⅱ. Design

We describe the detailed architectural design of our system for

resource consumption modeling in Figure 1. We divide the

functionality into three nodes - Experiment, Analysis, and Control

node.

Client Nodes
Figure 1. System Architecture

Our target events for tracing are the entry and exit point of all

system calls. We capture the metrics at the entry and exit of a system

call invocation, and calculates the elapsed time. This elapsed time

indicates the number of CPU cycles used during the system call

execution. Similarly, the difference between the exit of one system call

and the entry of the next system call gives us the CPU cycles

consumed by the application (i.e. NoSQL database of choice) during

the user mode. The memory bandwidth usage can be obtained

similarly. The network and disk I/O bandwidth usage is obtained from

the return values of these system calls.

There are a few known tools available for tracing the system calls

from target applications and gather resource usage information.

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

041



epoll_wait read read write

Repeat Repeat

(EAGAIN)

epoll_wait read sendmsg

Repeat
recvmsg recvmsg sendmsg

Redis

Memcached

MongoDB

Figure 2. System call sequence model of Redis,

Memcached, and MongoDB

Figure 3. Resource consumption result of Insert operation

Figure 4. Resource consumption result of Select operation

Figure 5. Resource consumption result of Delete operation

SystemTap, one of those, is a tool that traces the Linux kernel

activities without recompiling the kernel. It allows users can specify

various actions for events and even add custom helper functions. In

the current implementation, SystemTap is selected as a tool for

system call tracing and resource usage accounting. We have added the

CPU and memory accounting logic into the SystemTap module.

Ⅲ. Evaluation

We chose three NoSQL databases (Redis, Memcached and

MongoDB) as the targets of resource model construction. Depending

on our key objectives of achieving the explainability, we present here

the modeling results of three NoSQL databases produced by our

100 M

200 M

300 M

400 M

0 100 200 300 400 500 600 700 800
Arrival rate(req/sec)

Retired instruction

. Prediction: LR

Training: Perf
Prediction: RedScope

Ground Truth
.

.
0.3%
error

7.1%
error

18.7%

20.3%

Figure 6. Accuracy of our technique and the LR(Linear

Regression) model on MongoDB insert operation

framework and provide descriptions of internal behaviors. Figure 2

shows the system call sequences we discovered for three NoSQL

databases. We have applied three operations (insert, delete, and select)

to all three. However, the system call patterns were identical for three

operations within the same database. Figure 3, 4, and 5 describes the

resource consumption amount for unhalted cycle and retired

instruction of each three operations constructed by our technique.

Figure 6 shows the instruction consumption according to each

operation predicted by ours and their actual observations. The

experiment was designed to predict the resource usage used by the

target NoSQL database when a series of requests are issued by

varying the arrival rate from the client. For comparison, we set up a

simple linear regression model based on the values collected from the

Perf tool. The retired instruction model for MongoDB insert operation

was evaluated. In the graph, dotted lines show trends obtained from

linear regression model. In MongoDB, as the request frequency

increases, the inclination of resource usage becomes less stiff, unlike

the linear regression result.

Ⅳ. Conclusion

In this work, we have demonstrated the feasibility of the grey-box

approach based on the system call traces to building the resource

consumption models of NoSQL databases. Using the proposed

framework, we investigated three NoSQL databases to gain new

insights and analyzed their scalability potentials. Our findings revealed

that NoSQL databases all have unique and complex internal operations

that affect their overall scalability.

REFERENCES

[1] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K.

Kumaran. Benchmarking machine learning methods for

performance modeling of scientific applications. In 2018 IEEE/ACM

Performance Modeling, Benchmarking and Simulation of High

Performance Computer Systems (PMBS), pages 33-44, 2018.

[2] C. Witt, M. Bux, W. Gusew, and U. Leser. Predictive performance

modeling for distributed batch processing using black box

monitoring and machine learning. Information Systems, 82:33-52,

2019.

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

042




