2 (The 2nd Korea Artificial Intelligence Conference)

Understanding Resource Usage of NoSQL Databases Through System call Trace

Changho Seo, Yunchang Chae, Jaeryun Lee, Euiseong Seo*, and Byungchul Tak

Kyungpook National University, *Sungkyunkwan University

[changho.seo, cyc, jrlee, bectak]@knu.ac.kr, *euiseong @skku.ac.kr

Abstract

NoSQL databases have quickly become an indispensable component for big data processing and Al applications. However, it
is very challenging to select the best NoSQL database that fits the performance and scalability requirements of the big data
and Al application at hand. To address these challenges, we investigate the feasibility of the approach that tries to build
accurate resource consumption models of NoSQL databases from low-level system call information. Accurate resource
consumption models would enable us to reason about the expected performance and the scalability capacities for given
workloads and hardware specifications. Our study reveals that NoSQL databases exhibit unique resource consumption behaviors
even for functionally the same operations. Also, we verify that it is feasible to build accurate resource consumption models with

only a small number of experiments.

I. Introduction

NoSQL databases are established as the essential component for big
data and Al applications. Selecting the right NoSQL database as the
backend storage for the big data and Al is critical for the performance
and efficiency. However, it is challenging to select the most fitting one
for the type of applications to be run. Static information, such as
software features or capabilities from various document sources can
provide only the general information. Key information about the actual
performance characteristics and scalability under the expected
workloads are not easily derivable from such documentations.

Performance benchmarking is one way to build performance models
and infer the scalability [1], [2]. Unfortunately, these black-box
methods have several shortcomings. Benchmarking approaches can
cover only a fraction of vast search space made of workload types,
configurations, and environment preferences. Furthermore, it is
difficult to explain the observed performance outcomes and reason for
various scenarios, such as different workload intensity and mix.

In this work, we address these challenges by investigating the gray
box techniques for building accurate resource consumption models of
NoSQL databases. We use system call activities directly related to the
resource consumption such as read, write, send, recv and futex system
calls. These system calls decorated with CPU cycles, memory
bandwidth, and I/O byte accounting information from the basis of our
resource model.

In our grey-box technique, system call-level information is used
because they offer several advantages. First, developing a technique
does not require us to have application—specific knowledge such as
internal function descriptions or software architecture. Second, system
calls directly provide I/O resource accounting data through return
values. Third, source code is not required since we do not intend to
instrument the code. Lastly, the amount of traced data we need to
process is significantly less than those of function-level or
instruction-level traces.

We were able to develop a set of novel algorithms to handle all

challenges mentioned above and built the desired resource
consumption models of three key operations (insert, select, delete) for

Redis, Memcached and MongoDB NoSQL databases.

1. Design

We describe the detailed architectural design of our system for
in Figure 1. We divide the
functionality into three nodes - Experiment, Analysis, and Control

resource consumption modeling

node.

Figure 1. System Architecture

Our target events for tracing are the entry and exit point of all
system calls. We capture the metrics at the entry and exit of a system
call invocation, and calculates the elapsed time. This elapsed time
indicates the number of CPU cycles used during the system call
execution. Similarly, the difference between the exit of one system call
and the entry of the next system call gives us the CPU cycles
consumed by the application (i.e. NoSQL database of choice) during
the user mode. The memory bandwidth usage can be obtained
similarly. The network and disk I/O bandwidth usage is obtained from
the return values of these system calls.

There are a few known tools available for tracing the system calls

from target applications and gather resource usage information.

041



2 (The 2nd Korea Artificial Intelligence Conference)

epoll wait read read write
(EAGAIN)
Redis
N
L. Repeat Repeat
epoll wait read sendmsg
Memcached ‘—». C
:l ______ Repeat
recvmsg recvmsg sendmsg
MongoDB

Figure 2. System call sequence model of Redis,
Memcached, and MongoDB

Figure 3. Resource consumption result of Insert operation

Figure 4. Resource consumption result of Select operation

Figure 5. Resource consumption result of Delete operation

SystemTap, one of those, is a tool that traces the Linux kernel
activities without recompiling the kernel. It allows users can specify
various actions for events and even add custom helper functions. In
the current implementation, SystemTap is selected as a tool for
system call tracing and resource usage accounting. We have added the

CPU and memory accounting logic into the SystemTap module.

. Evaluation
We chose three NoSQL databases (Redis,

MongoDB) as the targets of resource model construction. Depending

Memcached and

on our key objectives of achieving the explainability, we present here
the modeling results of three NoSQL databases produced by our

Retired instruction

400 M
Training: Perf 203% o
300 M Prediction: RedScope
« Prediction: LR 187% 0.3%
Ground Truth 70
200 M
100 M

0 100 200 300 400 500 600 700 800
Arrival rate(req/sec)

Figure 6. Accuracy of our technique and the LR(Linear
Regression) model on MongoDB insert operation

framework and provide descriptions of internal behaviors. Figure 2
shows the system call sequences we discovered for three NoSQL
databases. We have applied three operations (insert, delete, and select)
to all three. However, the system call patterns were identical for three
operations within the same database. Figure 3, 4, and 5 describes the
resource consumption amount for unhalted cycle and retired
instruction of each three operations constructed by our technique.

Figure 6 shows the instruction consumption according to each
operation predicted by ours and their actual observations. The
experiment was designed to predict the resource usage used by the
target NoSQL database when a series of requests are issued by
varying the arrival rate from the client. For comparison, we set up a
simple linear regression model based on the values collected from the
Perf tool. The retired instruction model for MongoDB insert operation
was evaluated. In the graph, dotted lines show trends obtained from
linear regression model. In MongoDB, as the request frequency
increases, the inclination of resource usage becomes less stiff, unlike

the linear regression result.

IV. Conclusion

In this work, we have demonstrated the feasibility of the grey-box
approach based on the system call traces to building the resource
consumption models of NoSQL databases. Using the proposed
framework, we investigated three NoSQL databases to gain new
insights and analyzed their scalability potentials. Our findings revealed
that NoSQL databases all have unique and complex internal operations
that affect their overall scalability.

REFERENCES

[1] P. Malakar, P. Balaprakash, V. Vishwanath, V. Morozov, and K.
Kumaran. Benchmarking machine learning methods for
performance modeling of scientific applications. In 2018 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pages 33-44, 2018.

[2] C. Witt, M. Bux, W. Gusew, and U. Leser. Predictive performance
modeling for distributed batch processing using black box

monitoring and machine learning. Information Systems, 82:33-52,
2019.

042





