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Abstract 

 
Facial emotion recognition system has been recently developed for more advanced 

applications of face detection. The FER system classifies the human expression in various 

categories such as angry, disgust, fear, happy, sad, surprise, and neutral. Conventional FER 

systems have issues with low accuracy and high resource requirements. In order to 

increase the accuracy, an extreme version of Inception V3, known as Xception, is leveraged 

in this paper. To enable low resource requirements, a 68-landmark face detector from Dlib 

is used. Moreover, to develop a lightweight FER model, different network optimization 

methods are applied to Xception. The optimization methods used are pruning and 

quantization to support lower computational costs and reduce memory usage, respectively. 

Furthermore, to increase the inference speed of the FER system, a deep learning (DL) 

compiler is used to implement advanced optimization techniques to the model. The 

objectives of these optimization methods are experimentally demonstrated by the proposed 

lightweight FER system as compared to VGG-Net and ResNet50. Hence, the proposed 

system can be used to realize an efficient FER system in real-time inference. 

 

 

Ⅰ. Introduction 

Emotion recognition based on artificial intelligence (AI) has 

been recently developed to realize a better human-computer 

interaction. It is the process of identifying human emotions by 

analyzing facial expressions [1], decoding voice patterns [2], 

monitoring eye movements [3], or examining brain signals 

[4]. Since humans have cultural differences or distinct ways 

of expressing emotions, AI-based emotion recognition has 

long been a broad area of study. That is, the challenges of 

human diversity make it harder for computers to draw 

accurate conclusions. Nonetheless, researchers have been 

exerting efforts to alleviate the issues with emotion 

recognition by utilizing different supervised learning task 

algorithms. This could increase the potential of creating a 

more accurate emotion recognition algorithm based on human 

interactions with computers through visual, sounds, or 

neurological signals. 

One of the most prominent fields of study nowadays 

regarding emotion recognition is facial emotion recognition 

(FER). FER system refers to an emotion recognition process 

that analyzes human face expressions to identify a specific 

emotion. As shown in Fig. 1, this system involves two tasks: 

1) face detection task and 2) facial emotion classification task. 

First, the human face is detected from the image acquired. 

Second, the detected face is analyzed by an FER algorithm to 

classify which emotion it displays. The human emotions are 

commonly categorized as follows: 1) angry, 2) disgust, 3) fear, 

4) happy, 5) sad, 6) surprise, and 7) neutral. These seven 

emotions are accountable for the complex implementation of 

FER which typically provide a various range of accuracy. For 

instance, [5] obtained the highest accuracy in happiness, 

while the lowest accuracy is observed in fear, which results 

to a low overall accuracy of 76%. [6] explored different 

supervised classification task algorithms for FER using K-

nearest neighbor (KNN) and artificial neural network (ANN), 

separately. But both KNN-based and ANN-based FER 

methods lead also to low accuracy results (i.e., 54.16% and 

66.66%, respectively) due to the corresponding low 

accuracies from different emotion categories. To resolve this 

issue with the accuracy, deep learning (DL)-based methods 

are proposed to improve the overall accuracy of FER 

algorithms up to 90% [7]. By this, researchers focus more on 

developing deeper networks or known as convolutional neural 

networks (CNNs) to find more complex features and increase 

the accuracy of FER system. The complexity of a CNN model 

refers to millions of connections within an architecture. It 

aims to search for significant facial patterns that can bring 

even up to more than 95% accuracy to FER system [8]. 

However, the inference speed and computational costs of FER 

system are often disregarded in exchange for higher accuracy 

results.  

To cope with the issues of CNN models, some researchers 

 
Fig. 1.  Demonstration of an FER system [9]. 

 

 

Face Detection

Output: Bounding box and 68 facial landmarks
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proposed to develop lightweight FER models. A lightweight 

FER model refers to an FER model with reduced resource 

requirements and faster inference speed. Several studies 

create transfer learning-based lightweight FER models by 

using state-of-the-art pre-trained DL models like VGG-Face 

[9], VGG16 [10], and Deep Face Convolutional Neural 

Network (CNN) [10]. However, their studies benchmark only 

which pre-trained models can provide both high accuracy and 

less complex architecture as compared to other existing 

models. That is, the original structure of the pre-trained 

models is not reduced, and so, no relative improvement can 

be observed in the results. To realize a novel lightweight FER 

model, several optimization methods can be used. An 

optimization method removes unimportant and redundant 

connections within a CNN model's architecture, albeit at the 

risk of a significant reduction in accuracy. The commonly 

used types of optimization methods are: 1) pruning, 2) 

quantization, and 3) DL compiler. Pruning refers to effective 

search and elimination of unimportant and redundant 

connections within the CNN model to reduce hardware 

requirements [11]. On the other hand, quantization refers to 

the conversion of the model from higher to lower precision 

format to support faster computation [12]. Meanwhile, DL 

compiler targeted the hardware architecture of the model to 

maximize the performance of the available hardware, at less 

computational costs, during DL inference [13]. These three 

optimization methods can be used to build a lightweight FER 

model that can provide better inference performance over 

existing pre-trained models.  

In this paper, we proposed a lightweight FER model by 

network optimizations. The proposed method aims to have an 

efficient FER system by reducing the complexity of the DL-

based FER model. The application of several optimization 

methods can optimize both the software and hardware 

components of the FER system. The optimization method will 

be carefully implemented to prevent any potential model 

accuracy loss. The contributions in this paper are summarized 

as follows: 

 

1) To reduce computational costs, pruning is applied to 

remove unimportant and redundant connections within 

the architecture of the FER model. 

2) To reduce the memory usage and increase inference 

speed of FER system, quantization is used to save the 

lightweight FER model at lower precision format. 

3) To further increase inference speed while maintaining 

the reduced computational costs, DL compiler will be 

used to redesign the FER model to leverage with the 

available hardware of the device. 

 

The remainder of this paper presents in detail the 

development of FER system, different network optimization 

methods, the proposed methodology, and conclusion. 

 

Ⅱ. Related Works 

In this section, the development of facial emotion 

recognition (FER) system is discussed in detail. This is 

followed by the discussion of different network optimization 

methods that can be used to realize better inference 

performance in the FER system.  

 

A. Development of Facial Emotion Recognition System 

The current FER systems are divided into two tasks: 1) face 

detection task and 2) facial emotion classification task. In the 

FER system, the human face is detected and fed to an 

algorithm to analyze patterns and classify facial expressions. 

The emergence of state-of-the-art face detection algorithms 

led to the development of FER systems. 

The traditional face detection algorithms like Viola-Jones 

detector [14] achieves real-time face detection of human 

using different feature descriptors [15], such as Haar-like 

features, histogram of oriented gradients (HOG), and linear 

binary pattern (LBP), to extract features and output the 

coordinates of the bounding box of a face. On one hand, Haar-

like features method uses different rectangular filters to 

check the presence of a face. It has an integral image method 

and cascading classifiers to quickly calculate the sum of pixel 

values, and ignore background and non-face objects, 

respectively. On the other hand, HOG method calculates the 

histograms of gradients to check edges and corners from the 

images for extracting useful features. Lastly, LBP method 

checks textures by comparing pixels and generating binary 

patterns. It is used for various computer vision tasks due to 

its ability to check illumination invariance from an image. As 

shown in Table I, HOG obtained the highest true positive rate 

(TPR) while the highest false negative rate (FNR) is observed 

in LBP. Although the traditional methods are widely used 

because of its low computational costs, it is limited in practical 

applications due to its relatively low accuracy results. To 

address this issue, DL is used to create more advanced 

methods and extract meaningful features that can be used in 

various applications like face and object recognition. One of 

the most popular DL-based face detection models is multi-

TABLE I 

Comparison of Face Detection Methods [15] 

Metrics / Methods Haar HOG LBP 

Detected Frames 653484 772954 503516 

Detected Faces 652451 772954 503350 

TPR (%) 78.23 92.68 60.37 

FNR (%) 21.76 7.31 39.64 

 

 

Fig. 2.  Samples of WIDER FACE dataset. 
 

 

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

377



task cascaded convolutional neural network (MTCNN) [16]. 

MTCNN is composed of three cascaded CNNs, namely P-Net, 

R-Net, and O-Net, to provide the coordinates of bounding 

boxes and facial landmarks (i.e., eyes, nose, and two corners 

of the mouth) of the human face. As shown in Fig. 2, it solves 

issues with multiple posture variations, various human 

expressions, and lighting conditions, as tested on WIDER 

FACE dataset [17]. Another multi-stage CNNs for face 

alignment and detection is deep alignment network (DAN) 

[18]. DAN is a robust method that uses landmark heatmaps 

and feature images that transfers the landmark information 

between stages. As shown in Fig. 3, DAN generates a total of 

68 facial landmarks, while MTCNN only generates 5. Thus, 

DAN can be used more effectively in complex application like 

in FER systems. However, since both MTCNN and DAN are 

built with multiple stages of CNNs, it requires high 

computational costs, which yield to low inference speed 

during real-time implementation. In this paper, a pre-trained 

68-facial landmark detector trained in iBUG 300-W dataset 

(see Fig. 4) by Dlib [19] is used. The 68-facial landmark 

detector provides similar output like DAN but with reduced 

computational costs. It can be used to enable faster inference 

speed of FER system. 

In line with the advancement of DL-based models, there are 

several facial expression or FER models that use CNN 

architecture to realize higher accuracy results. The traditional 

FER models [6] use K-nearest neighbor (KNN) and shallower 

network like artificial neural network (ANN). Both are used to 

classify human expression or emotion based on seven 

categories: 1) angry, 2) disgust, 3) fear, 4) happy, 5) sad, 6) 

surprise, and 7) neutral. These categories contribute to the 

complexity of building an FER model in addition to human 

diversity. Mostly, each emotion has huge similarity to other 

categories, which make it difficult to distinguish from other 

types of emotions. As a result, a non-parametric algorithm, 

such as a KNN-based model, cannot be utilized to effectively 

categorize the wide range of human emotions because it 

simply calculates and analyzes the distance between a sample 

and seven different emotional categories. Similarly, a 

shallower network, like an ANN-based model, is not efficient 

to extract significant features of several human emotions. The 

accuracy of ANN-based model reached up to 60% only, which 

is 10% higher than KNN-based model. For this reason, 

researchers focus more on developing FER models with 

deeper networks to learn more useful features. Deeper 

networks are generally leveraged using CNN architectures. It 

consists of millions of connections to extract and learn useful 

features that can be used to classify certain emotion based on 

the human face. [7] proves that increasing the depth of a 

network can improve the accuracy results of FER models up 

to 90%. The number of parameters within a CNN architecture 

is increased by applying more layers and using smaller 

kernels, which can learn more complex patterns. However, 

DL-based FER models suffer from low inference speed issue 

due to high computational cost requirement. To solve this 

issue, several researchers exerted efforts on developing 

lightweight FER models. A lightweight FER model is an 

optimized algorithm to support low computational cost and 

high inference speed. Some studies benchmark commonly 

used pre-trained models for FER task by transfer learning. 

They compare VGG-Face [9], VGG-16 [10], and Deep Face 

CNN [10] in terms of computational and memory costs. 

Although the existing pre-trained models can provide high 

generalizations, their requirements remained high. In addition, 

deeper networks can easily have problem of overfitting due 

to considerable number of parameters. Hence, key to 

lightweight FER models is to significantly reduce the 

parameters without affecting the accuracy. Most of the 

parameters are observed in the last fully connected layers of 

the CNN models. For instance, in the VGG-Net [20], the last 

fully connected layers include 90% of the total parameters. 

To reduce the parameters, Inception V3 [21] replaces the last 

fully connected layers with Global Average Pooling operation, 

which takes the average of the elements in feature image. To 

further reduce the parameters, an extreme version of 

Inception V3, known as Xception [22], is developed. Xception 

utilizes deep residual learning and depth-wise separable 

convolutions to separate the feature extraction and 

composition processes. Most of the efficient FER models 

developed nowadays are based on Xception architecture [23]. 

Although the computational cost of FER system is reduced by 

leveraging with Xception architecture, further optimizing this 

is still a challenge. In this paper, we proposed a lightweight 

FER model by applying different network optimization 

methods. 

 

B. Network Optimization Methods 

There are several network optimization methods that can 

effectively reduce CNN models, realize faster inference 

speed, and lower computational costs. In this paper, we used 

different optimization methods, such as pruning, quantization, 

and DL compiler, to reduce the complexity and requirements 

of Xception model for the FER task. 

 
                 (a)                       (b) 

Fig. 3.  Comparison of (a) MTCNN and (b) DAN. 

 

 

 

Fig. 4.  Representation of 68 facial landmarks based on iBUG 300-W 

dataset annotations. 
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Pruning refers to an effective search and elimination of 

unimportant and redundant connections within the CNN model 

[11]. The weights, filters, and channels are the connections 

in the CNN model that build up its enormous complexity. By 

applying pruning method, the complexity of the model can be 

reduced. As a result, the model's memory and computational 

costs will be reduced during implementation. Pruning can be 

categorized as unstructured and structured. Unstructured 

pruning prunes redundant weights of a CNN model in fine-

grained nature, as shown in Fig. 5(a). It effectively reduces 

the computational costs of the model. On the other hand, 

structured pruning refers to pruning of insignificant channels 

and/or filters of a CNN model in coarse-grained nature, as 

shown in Fig. 5(b). It can leverage the hardware parallelism 

of the device in expense of the substantial reduction in the 

storage footprint of the model. For comparison, unstructured 

pruning is more flexible than structured pruning in searching 

for optimized pruning structure. So, the former is easier to 

implement and typically achieves higher compression rate 

without affecting the accuracy results. In this paper, we used 

unstructured weight pruning to reduce the computational 

costs of Xception model while securing zero or negligible 

accuracy loss. 

Meanwhile, quantization refers to the conversion of the bit 

representation of each weight from the CNN architecture into 

lower precision format [12]. Since CNN models are stored in 

32-bit floating-point (FP32), it can be converted to either 

FP16 or even lower integer (INT) like INT8 and INT4 by using 

quantization. As a result, the memory usage is reduced, and 

the inference speed is increased. Quantization can be 

categorized as uniform and non-uniform. A uniform 

quantization has an equal step size or quantization level, which 

provides significant acceleration to the model. On the other 

hand, a non-uniform quantization does not have an equal 

quantization level, but usually achieves higher compression 

rate. The general process of quantization is shown in Fig. 6. 

In this paper, we used a uniform quantization to enable high 

inference speed to the FER system. 

Lastly, a DL compiler is used to leverage with the hardware 

architecture of the model [13]. It can optimize models by 

redesigning and compiling its architecture to easily access 

hardware optimizations for faster inference. It includes 

advanced performance optimization, varied computation 

graph optimization, tensor optimization, and half precision 

format support. There are various DL compilers that can be 

used to assist inference acceleration, such as TensorFlow-

Lite (TFLite), Alibaba Mobile Neural Network (MNN), Open 

Neural Network Exchange (ONNX), and NVIDIA TensorRT. 

These DL compilers have similar processes of optimizing 

CNN models. An example is shown in Fig. 7, which represents 

the advanced performance optimizations using NVIDIA 

TensorRT. In this paper, a DL compiler is utilized to compile 

the Xception model into an efficient end-to-end framework 
in order to improve the inference performance of the FER 

system. 

 

Ⅲ. Proposed Lightweight FER System  

The schematic diagram of the proposed lightweight FER 

system is shown in Fig. 8. As shown in the figure, there are 

three main processes in the proposed lightweight FER system: 

1) face detection of the input image, 2) application of network 

optimization to the FER model, and 3) facial emotion 

classification.  

First, for the face detection of the input image, we used a 

pre-trained landmark detector from Dlib library to identify 68 

key points or facial landmarks marked at certain x and y 

coordinates in the human face. The key points localize the 

region around the human face, such as the eyebrows, eyes, 

nose, mouth, chin, and jaw. The Dlib 68-landmark face 

detector also provide the coordinates of a bounding box 

enclosing the human face. It is trained on the iBUG 300-W 

dataset, which is built by the Intelligent Behavior 

Understanding Group (iBUG) at Imperial College London. As 

shown in Fig. 9, the iBUG 300-W dataset contains ''in-the-

wild'' images collected from the internet and corresponding 

68 facial landmarks and bounding box annotations. It has more 

than 4000 static images, each having single face of various 

poses, expressions, and illuminations. The trained model is 

tested on 300-W test dataset collected also ''in-the-wild'' 

images, 300 indoor and 300 outdoor, each image has multiple 

 
Fig. 7.  Advanced performance optimizations using NVIDIA TensorRT. 

 

 

 

Fig. 5.  Comparison of (a) unstructured pruning and (b) structured 

pruning. Note that unstructured pruning prunes weights while 

structured pruning prunes channels and/or filters. 

 

 

 
Fig. 6.  General process of quantization. Sample of converting 32-bit 

floating-point number to 8-bit integer. 
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faces and huge facial variations, see samples in Fig. 10. The 

pre-trained face detection model has an efficient inference 

performance in detecting faces based on 300-W test dataset. 

For this reason, the Dlib 68-landmark face detector is used 

in this paper to extract useful patterns from several types of 

emotions in human faces. It can provide an efficient 

calculation to distinguish one specific emotion to another for 

an accurate FER system. 

Second, for the application of network optimization to the 

FER model, we used pruning, quantization, and DL compiler 

to the Xception model to develop lightweight FER system. An 

Xception model has better accuracy and relatively smaller 

parameters than the existing CNN models (e.g., VGG-Net and 

ResNe50) as trained and tested on FER2013 dataset (see 

samples in Fig. 11). However, it still has issues with high 

computational costs, high memory usage, and low inference 

speed during FER implementation. In this paper, we utilized 

several optimization methods that targeted both software and 

hardware components of the FER system to solve the issues.  

Initially, we used unstructured pruning method to reduce 

the total number of non-zero parameters of Xception model 

by removing redundant and insignificant parameters. This 

optimization method will significantly reduce the 

computational costs of the model. Typically, the compression 

ratio of the pruned CNN architecture relative to the 

uncompressed is given by  

 

𝑅𝑅 =
∑ 𝑈𝑈𝑤𝑤,𝑓𝑓,𝑐𝑐

(𝑖𝑖)𝐿𝐿
𝑖𝑖=1

∑ 𝑃𝑃𝑤𝑤,𝑓𝑓,𝑐𝑐
(𝑖𝑖)𝐿𝐿

𝑖𝑖=1
, (1) 

 

where 𝑅𝑅  is called the compression ratio between 

uncompressed (𝑈𝑈)  and pruned models (𝑃𝑃) ; 𝑈𝑈𝑤𝑤,𝑓𝑓,𝑐𝑐
(𝑖𝑖)  and 

𝑃𝑃𝑤𝑤,𝑓𝑓,𝑐𝑐
(𝑖𝑖) represents the total number of weights (𝑤𝑤), filters (𝑓𝑓), 

and/or channels (𝑐𝑐) up to layer 𝐿𝐿 of the uncompressed and 

pruned CNN architecture, respectively.  

Then, we used a uniform quantization method to reduce the 

memory usage and increase the inference speed of the 

Xception model by converting its high precision format from 

FP32 to FP16 or INT8 low precision format. General weights 

quantization is computed by 

 
Fig. 8.  Schematic diagram of the proposed lightweight FER system. 

 

Image Acquisition

Face Detection

Results:
Angry: 0.996
Disgust: 0.000
Fear: 0.001
Happy: 0.000
Sad: 0.002
Surprise: 0.000
Neutral: 0.000

Facial Emotion Recognition

 
Fig. 9.  Samples of iBUG 300-W dataset with annotations. 

 

 
Fig. 10.  Samples of 300-W test dataset (outdoor – left, indoor – 

right). 

 

 
Fig. 11.  Samples of FER2013 dataset. 
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𝑠𝑠𝑏𝑏 =
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(3) 

 

𝑀𝑀𝑊𝑊 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑎𝑎𝑠𝑠�𝑊𝑊𝑓𝑓𝑓𝑓�� , (4) 
 

where 𝑊𝑊𝑏𝑏 represents the quantized weight tensor, 𝑎𝑎 is the 

desired lower-precision format, 𝑠𝑠𝑏𝑏 is the quantization scale 

factor, 𝑊𝑊𝑓𝑓𝑓𝑓 is the original weight tensor in higher-precision 

floating-point format, and 𝑀𝑀𝑊𝑊  is the absolute maximum 

weight from 𝑊𝑊𝑓𝑓𝑓𝑓. The quantized weight tensor is obtained by 

the product of the quantization scale factor and each weight 

from the original weight tensor rounded to the nearest 

integer. The quantized weights are bounded by the 

symmetrical dynamic range of the desired lower-precision 

format. This will reduce the memory usage of Xception model 

by more than 50% and slightly increase its inference speed.  

The general problem of applying pruning and/or 

quantization is due to the difficult search of the compression 

hyperparameters in each layer of the CNN model. There are 

several approaches that can be used to effectively optimize 

the hyperparameters. One of these approaches is known as a 

heuristic method or manual tuning of the hyperparameter per 

layer of the CNN architecture. Another one is a black box 

optimization or Bayesian optimization method, which is an 

automatic hyperparameter-search approach. However, these 

approaches are inefficient because they rely only on repeated 

trial-and-error procedures to determine the ideal 

hyperparameters in a layerwise manner, which frequently 

results in a significant accuracy loss. To solve this problem, 

we implemented a constrained approach of pruning and 

quantization methods to minimize any possible accuracy 

degradation after optimization. This approach will not 

consider any compression hyperparameters to eliminate the 

risk of having low accuracy results.  

Finally, we employed a DL compiler to further optimize and 

increase the inference speed of Xception model. Each 

framework (e.g., PyTorch, Keras, and TensorFlow) has its 

own distinct representation of a computation graph which 

often leads to a restriction in using a model from one 

framework to another. We solved this issue by using an Open 

Neural Network Exchange Format (ONNX), which is designed 

to standardize layer definitions of a network and support most 

of deep learning model formats. In this paper, a Keras 

framework is employed to train and optimize Xception model. 

Then an existing Keras to ONNX converter is utilized to 

reconstruct the network graph with the equivalent operators 

on ONNX format. This will allow a performance-focused 

inference optimizer, called ONNX Runtime, to automatically 

utilize the available hardware accelerators and runtime on the 

host device. Hence, improving the performance of the model. 

This inference engine partitions the execution graph into 

subgraphs and run each subgraph on the most efficient 

execution provider such as CUDA and TensorRT. By applying 

pruning, quantization, and DL compiler, a lightweight FER 

model is developed, as shown in Fig. 8. 

Lastly, for the facial emotion classification, the proposed 

lightweight FER model shows better performance when 

implemented in real-time inference, as shown in the last 

diagram in Fig. 8. 

 
Fig. 12.  Accuracy and loss curve of [23] based on FER2013 dataset. 

 

 
Fig. 13.  Train and test accuracy of [23] based on actual test set. 

 

 

                     (a)               (b) 

Fig. 14.  Representation of the proposed lightweight FER model in 

(a) Keras format and (b) ONNX format. 
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IV. Experiment  

In this section, we evaluated the performance of the 

proposed lightweight FER model. First, the loss and accuracy 

results of training the lightweight FER model is demonstrated. 

Then, the performance of the lightweight FER model is 

compared to other existing FER systems in terms of the 

computational costs, memory usage, and inference speed. 

The Xception model is trained on FER2013 dataset for a 

total of 250 epochs. The model is being optimized, using the 

pruning and quantization methods, and trained simultaneously. 

Fig. 12 shows the potential change curves of the loss and 

accuracy values after 250 epochs of training and optimizing 

the model. As can be seen in the figure, the train accuracy 

reached 71% while the validation accuracy achieved 67% as 

tested on FER2013 dataset. Fig. 13 shows the actual test 

accuracy of the model which reached up to 67% as validated 

on ''in-the-wild'' images from the internet. The results of the 

proposed lightweight FER model are comparable with these 

figures. 

Furthermore, the model trained in Keras framework is 

compiled into ONNX format. Fig. 14 shows the difference in 

architectures of the proposed model. The ONNX format of the 

Xception model has fewer blocks as compared to Keras. This 

means that some of the computation graph within the 

architecture is efficiently optimized. Table II shows the actual 

test result of the proposed lightweight FER model across 

different emotion categories. The proposed model accurately 

classified the test images based on their specific emotion. The 

highest accuracy is observed to angry, disgust, and happy, 

while the lowest accuracy is observed to sad and neutral. The 

comparison of the accuracy of the proposed lightweight FER 

model to other existing FER models is shown in Table III. As 

can be seen in the table, the proposed model has the highest 

test accuracy result reaching 67%. Other models, such as 

VGG-Net, ResNet-50, and CNN, have overfitting problems 

since their accuracy on train set is close to 100% but their 

resulting test set accuracy only reached about 60%. 

Moreover, Table IV shows the hardware and inference 

performance of the proposed lightweight FER model. As 

shown in the table, the proposed model has the least number 

of parameters. In addition to that, the computational cost of 

the model based on CPU is second only to CNN, however, the 

significant difference in their memory usage makes the 

proposed model (3.1%) superior to CNN (12%). The inference 

speed measured in frame per second (fps) of the proposed 

model is relatively high (21 fps). Hence, the proposed 

lightweight FER model outperforms other existing models. 

 

V. Conclusion  

In this paper, we proposed a lightweight FER system that 

realizes an efficient inference performance during real-time 

implementation. We experimentally demonstrated that the 

application of network optimization methods, like pruning and 

quantization, can effectively reduce the computational costs 

and memory usage of the Xception model without affecting its 

accuracy results. Also, employing DL compiler, like ONNX, 

can further increase the inference speed of the model. This is 

by utilizing the half precision support and TensorRT 

execution of the compiler. Our obtained experimental results 

show that the proposed lightweight FER system, with the used 

of Dlib 68-landmark face detector, outperforms other existing 

FER models specially in terms of real-time inference. 

Specifically, our proposed system achieved smaller number of 

parameters (58423 only), low CPU and memory usage 

(17.50% and 3.1%), and relatively high inference speed 

reaching 21 fps, as compared to other existing FER systems. 
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TABLE II 

Actual Test Results of The Proposed Lightweight FER Model 

Lightweight FER Model Angry Disgust Fear Happy Sad Surprise  Neutral 

Angry 0.996 0.000 0.001 0.000 0.002 0.000 0.000 

Disgust 0.002 0.997 0.000 0.000 0.000 0.000 0.000 

Fear 0.003 0.000 0.839 0.000 0.128 0.027 0.003 

Happy 0.001 0.000 0.001 0.992 0.000 0.005 0.002 

Sad 0.160 0.001 0.029 0.003 0.414 0.001 0.391 

Surprise 0.004 0.000 0.035 0.003 0.000 0.957 0.000 

Neutral 0.156 0.000 0.050 0.008 0.271 0.004 0.511 

 
TABLE III 

Comparison of Different FER Models 

Model 
Train set  

accuracy (%) 

Test set  

accuracy (%) 

VGG-Net 98.98 59.32 

ResNet-50 98.87 57.48 

CNN 99.7 58.9 

HOG+CNN [41] - 61.86 

Improved Inception [42] - 66.41 

Network from [43] - 66.4 

CNN-based+Softmax [45] - 65.03 

ShallowNet [47] - 63.49 

Lightweight FER Model 71.00 67.00 

 

TABLE IV 

Hardware and Inference Performance of Different FER Models 

Model Parameters CPU (%) MEM (%) FPS 

VGG-Net 87566680 21.50 3.2 - 

ResNet-50 25500000 49.78 2.9 - 

CNN 95263 10.83 12.0 - 

Lightweight FER 

Model 
58423 17.50 3.1 21 
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