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Abstract   

 
   In recent years, one of the key innovations in manufacturing automation is the 

improvement of object detection and classification through surveillance. To have a more 

reliable system that performs monitoring in a manufacturing facility, machines are 

integrated with object detection algorithms to help ensure the quality and sorting of 

products accurately and efficiently. One of the recent and widely used deep learning-based 

object detection algorithms is the YOLOv5, also known as “You Only Look Once” version 

5. YOLOv5 is supported by machine learning frameworks in deep learning, providing 

different execution performance. The goal of this paper is to determine the best suited 

framework for YOLOv5 to achieve the optimal hardware performance on edge based on the 

inference time and inference speed of the model. The performance comparative results 

revealed that among all the frameworks that were tested on the YOLOv5 model, TensorRT 

gave the best overall performance. Its average inference time to process the prepared test 

images is 133ms which has a percent difference of 22.11%, 41.70%, and 65.87% from the 

other frameworks such as ONNX, TensorFlow, and PyTorch, respectively. In the TensorRT 

framework, YOLOv5 was able to increase its hardware performance in terms of inference 

speed, yielding 8fps and 12fps, respectively, based on its specified precision of FP32 and 

FP16. Hence, YOLOv5 in TensorRT framework can be deployed in a resource-constrained 

device such as edge AI with improved inference performance for applications that involve 

object detection and classification. 

 

Ⅰ. Introduction  

   Manufacturing industries have allowed innovation in 

their manufacturing processes to increase their 

economic productivity that could keep up with the 

increasing demand of the public. The production and 

consumption of commodities have increased since the 

beginning of the industrial revolution, and it is that 

innovation in the manufacturing industries have helped 

to transform and to boost their productivity in the 

services provided. These services have aimed at 

manufacturing flexibility and rapid product innovation 

to gain competitive advantages in the manufacturing 

industry [1]. Recent innovative ideas in the 

manufacturing industry include hybridizing the tracking 

system with a Convolution Neural Network (CNN)-

based object detection [2]; and integrating an improved 

Singe Short Detector (SSD) network to a defect 

detection system in manufacturing [3].  

   These methods, such as Faster R-CNN and SSD, for 

object detection applications are popular for their 

efficient feature extraction ability [3]. The increase in 

demand for manufacturing automation has been realized 

with use of these deep-learning methods. It has become 

the interest in automated factories to develop and 

improve the production line performing complex and 

time-efficient tasks. However, object detection 

methods that have been recently proposed are not all 

well-suited to cover complex environments and to 

perform time-efficient tasks. Scenes that have 

imperfect background can affect the detection 

performance of a surveillance system [4]. A 

surveillance system in manufacturing would either need 

to purchase a better system or use a compact system 

integrated with the most efficient and accurate object 

detection model to improve the efficiency of object 

detection in a complicated background. This brings the 

need for a more reliable system that performs 

monitoring in a manufacturing facility and integrated 

with an object detection algorithm to help ensure the 

quality and sorting of products accurately and 

efficiently. 

   One of the widely used deep learning-based object 

detection algorithms is known as “You Only Look Once” 

or YOLO. It is a regression-based object detection 

system that delivers class probabilities for the 

discovered images omitting the region proposal 

process [5]. This process was performed differently 

and was compared to other state-of-the-art models, 

the summary of YOLOv5 comparison to state-of-the-

art models is presented in Table I. From the table, the 

methods are analyzed based on the complexity of their 

model, flexibility, and inference speed. These are the 

factors that greatly affect the hardware performance of 

a model when deployed on an edge. In [6], Fast R-CNN 

was the inspiration of the framework proposed in the 
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paper. It is an object detection model that can achieve 

superior performance because of its CNN features. It is 

composed of two processes that involves regional 

proposal and object recognition [7]. Both parts of fast 

R-CNN can determine the object that appears on the 

image and specify the region proposal of that image. 

Which shows that the structure of this model has 

redundant functions and can be further improved to 

speedup the computation or processing of object 

detection. Morever, the region-based network of the 

model is not optimized which brought false detection 

results when applied on a complex environment. There 

are some studies that have tried to improve the 

outpuHence, it would require a lot of processing power 

when deployed on an embedded system. To resolve this 

constraint in an object detection system, the SSD 

method was introduced. In [8], SSD can handle complex 

environments by introducing default boxes in different 

aspect ratios to a larger input image. The object 

detected by the default boxes will be categorized based 

on the scores generated by the network. This predicts 

the object category and adjusts the box to better fit the 

shape of the object. Moreover, the model is flexible 

enough to be deployed in an embedded system and even 

applied for real-time applications. However, the 

inference performance of this model was inefficient for 

high quality real-time detection which brought to the 

idea of developing a YOLO model. Although the SSD has 

an inference speed of 85FPS, which is faster than the 

7FPS of a Fast R-CNN model, the latest version of the 

YOLO series which is YOLOv5 [9] is capable of 

achieving 155FPS in real-time applications. Hence, 

among other models, YOLOv5 has been recorded to 

achieve faster speed, but lower accuracy. Considering 

its potential in the improvement of object detection 

algorithms, YOLO has become the hot topic by 

researchers to improve the surveillance system in 

manufacturing automation. The progression from the 

original version of YOLO up until its 5th version, has 

outperformed several models especially in terms of 

real-time inferencing. It is the latest version released 

for the YOLO series that is reliable, efficient, and 

simple to use.   

   In summary, although there are state-of-the-art 

models suitable for object detection applications, these 

models have some serious concerns. These concerns 

are as follows: 1) object detection algorithms produce 

false detection findings when applied in a complicated 

environment which indicates the lack of suitability and 

right information in the study, 2) the analysis in the 

improvement of the inference performance of a model 

was inefficient to determine a factor that contributes to 

the high quality real-time detection, and 3) deep-

learning models when deployed on an embedded device 

would demand a lot of processing power to perform 

difficult and time-efficient tasks. 

   To address the aforementioned concerns, our study 

has focused on benchmarking of YOLOv5 using known 

frameworks like TensorRT, ONNX Runtime, Pytorch, 

and Tensorflow on edge AI devices. The performance 

of the model is analyzed based on the inference 

performance of the device. These parameters would 

determine which framework has the highest efficiency 

of the YOLOv5 on edge AI device. It is, thus, aimed to 

attain a high-efficiency YOLOv5 model with the lowest 

possible hardware requirements on deep learning 

applications. The experimental analysis results will 

decide and explain which framework is best suitable for 

YOLOv5 on edge to conduct an accurate and efficient 

object detection task in a manufacturing environment. 

Ⅱ. Methodology  

 The overview for the architecture of object 

detection and classification using YOLOv5 on different 

machine learning frameworks is shown in Fig.1. This 

pipeline is composed of input images, YOLOv5 model, 

machine learning frameworks (i.e., PyTorch, 

TensorFlow, ONNX, and TensorRT), object detection 

Table I 
Summary of YOLOv5 comparison with state-of-the-art 

models for Object detection application 

Method Less 

Complexity Flexibility Inference 

Speed 

Fast R-CNN 

[6] ✔ ✖ 7 FPS 

SSD [7] ✔ ✔ 85 FPS 

YOLOv5 [8] ✔ ✔ 155 FPS 

 

 
 Fig. 1.  Overview of the architecture for object detection and classification using YOLOv5 in different ML frameworks. 
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and classification algorithm, and output images. A set 

of input images is fed into the pretrained YOLOv5 model 

where different machine learning frameworks are used 

in performing the object detection and classification 

algorithm. The output images are expected to have 

bounding boxes on the objects detected with their 

classifications. The inference time and speed of 

detecting objects from each image will also be 

outputted which varies depending on the ML framework 

that was used. 

 

A. The Network Architecture 
   YOLO is a family of deep learning-based object 

detection architectures and models pretrained on the 

COCO dataset. Before YOLO, the process of classifying 

objects in an input image was difficult, slow-moving, 

and not very energy efficient. Instead of going through 

the same process, the YOLO algorithm simplifies object 

detection and classification tasks by treating it as a 

regression problem and employing a one-stage 

algorithm to predict object classes and positions 

immediately. Specifically, it divides the input images 

into a grid system and makes predictions on all the 

objects detected in the images by computing all the 

features at the same time. It can precisely predict and 

locate the object using bounding box coordinates. 

Dataset: To evaluate the performance of the YOLOv5 

model based on the inference speed at different 

frameworks, a benchmark data set is utilized. Fig.3 

contains the test images that were picked from the pool 

of available images online aimed to best demonstrate 

the object detection and classification capabilities of 

the model. These images show the possible installation 

and applications of this study namely, pedestrian, 

streets, school facilities, backyard/garden, urban park, 

bus stop, and different parts of a house. Moreover, 

these images can be found in [10-19]. Hence, the 

dataset is important when re-training a model for a 

specific application. The more dataset is used to train 

the model, the higher the improvement in its accuracy 

and performance. 

YOLOv5: It is the latest version released for the 

YOLO object detection series which is 3x faster as 

compared with YOLOv4. By just looking at the image 

once, it can detect the objects with an expected speed 

of 140 FPS (Frames Per Second). In addition to that, the 

size of YOLOv5 is 9x smaller making it suitable to 

efficiently deploy on edge AI devices having low 

computational capability. YOLOv5 is supported by 

machine learning frameworks in deep learning, 

providing different execution performance. 

Frameworks: YOLOv5 was introduced with a PyTorch 

framework. The aspiration of researchers to 

continuously improve the architecture of the YOLO 

model has brought to the idea of converting a model 

defined in PyTorch into a different framework format 

(i.e., ONNX, TensorFlow, and TensorRT). These 

frameworks have a corresponding effect on the 

performance of the YOLOv5 model in terms of 

inference speed and accuracy. A benchmarking 

analysis on the results is undertaken and compared 

statistically and qualitatively with state-of-the-art 

models to evaluate the effectiveness of each framework 

and investigate the performance of the YOLOv5 model 

in an edge AI device.  

B. Hardware Platform 

   The hardware platform used as an edge AI device in 

the experimental setup is the NVIDIA Jetson Nano 

device. Fig.2 shows the actual device where the 

YOLOv5 model is deployed and performs the object 

detection and classification tasks. It is a resource-

constrained device, which means that it has limitations 

on resources such as computational power and memory 

 
Fig. 3.  Test Images. (a)Pedestrian, (b)Office, (c)Park, 

(d)Zidane, (e)Bedroom, (f)Road, (g)Bike, (h)Bus Stop, 

(i)Dinning, (j)Bathroom. 
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Fig. 2.  NVIDIA Jetson Nano (Edge AI device). 
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demand. For the YOLOv5 model, this is the perfect 

hardware platform to analyze the hardware 

performance of the model with different frameworks.  

It is important to understand the behavior of these 

models in actual implementation since most applications 

would require installation setup. It is compact and 

compatible with deep learning-based models, 

specifically, YOLO models since the structure have less 

complexity and less energy requirements.  

 

Ⅲ. Results and Discussion 

   In this section, the experimental setup and results 

are discussed to provide a comprehensive 

benchmarking analysis of the YOLOv5 model with 

different machine learning frameworks.  

Experimental Setup: NVIDIA Jetson Nano was used as 

the edge AI device to deploy the deep learning network, 

YOLOv5 model, in different frameworks for object 

detection and classification tasks. This edge AI device 

is popular for research that is related to building 

autonomous machines and complex AI systems because 

of its compactness and capabilities. Despite being small, 

it is a powerful edge AI device that is well-suited for 

real-world application and experimental setup. 

Deploying the model in this device provides the 

inference speed and inference time of processing 

object detection and classification tasks in every input 

image. The hardware performance of the YOLOv5 

model in different frameworks is evaluated with the 

following parameters: inference speed and inference 

time of the model design.  

 

A. Deep Learning Inference Performance 
 

   The YOLOv5 model was implemented with different 

frameworks and ran inference on the test images. The 

results for the inference time of processing the 

prepared test images in different ML frameworks is 

shown in Fig.4. Given the trend on the inference time 

of these ML frameworks, it gives the intuition that 

Pytorch took the longest time to identify and classify 

the objects in the test images. On the other hand, 

TensorRT is the framework that has the fastest 

average inference time of 133ms to process the test 

images. Despite that, all the frameworks for YOLOv5 

were able to maintain their average inference time for 

the succeeding test images starting the 3rd image. 

Moreover, among all the test images, the image (i) for 

dinning in Fig.3 took the longest for all the frameworks 

to detect and classify the objects in the image. The 

resulting percent difference of the different 

frameworks from the overall average inference time 

are 7.71%, 37.23%, 37.46%, and 39.22% for TensorRT, 

ONNX, TensorFlow, and PyTorch, respectively.  

  For the inference speed of the different frameworks, 

the YOLOv5 is deployed on edge AI devices and the 

results are recorded during the performance test. The 

graph in Fig.5 for inference speed of different ML 

frameworks with NVIDIA Jetson Nano shows that 

TensorRT FP16 and TensorRT FP32 got the fastest 

inference speed among the other frameworks with an 

inference speed of 12fps and 8fps, respectively. The 

result also shows that the YOLOv5 model at TensorRT 

FP16 format is 2x faster than the ONNX framework and 

4x faster than the PyTorch framework. In reference to 

the average inference speed of the YOLOv5 model in 

different frameworks, the percent difference of their 

individual results is a 9.95%, 18.46%, 33.20%, 57.14%, 

and 75.29% for ONNX, TensorRT FP32, TensorFlow, 

PyTorch, and TensorRT FP16, respectively.  

   From the overall performance of the YOLOv5 model 

on edge for object detection and classification tasks, 

TensorRT framework got the best performance based 

on the inference time and inference speed results. 

TensorRT managed to process all the test images 

within an average of 133ms (inference time) with an 

inference speed of 8fps for FP32 and 12fps for FP16. 

To achieve an optimal performance for the YOLOv5 

model, the best-suited framework to use is the 

TensorRT FP32. It might not have the fastest inference 

speed compared to FP16, but it has the most stable and 

high output results, which is 9.95% percent difference 

from the overall average inference speed, compared to 

all other frameworks.  

 

IV. Conclusion 

 

 
Fig. 4.  Inference time of processing test images in different 

machine learning frameworks. 
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Fig. 5.  Inference speed of different ML framework With 
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   In this paper, a performance comparative study is 

performed in the YOLOv5 model with different ML 

frameworks to determine which model architecture is 

best suited for the application of object detection and 

classification tasks. This paper utilized an edge AI 

device to observe the hardware performance of the 

YOLOv5 model through its inference time and inference 

speed. Its goal is to develop a YOLOv5 model that can 

run on low-resource devices and give real-time 

performance. In terms of overall performance for the 

YOLOv5 model, the acquired average inference speed 

is 6fps which is 2x slower on PyTorch but 2x faster on 

the TensorRT FP16 framework. For inference time, 

TensorRT got the fastest average time of 133ms which 

has a percent difference of about 22.11%, 41.70%, and 

65.87% for ONNX, TensorFlow, and PyTorch, 

respectively. Therefore, based on the results, 

TensorRT is the best suited framework for YOLOv5 

with an average inference time of 133ms and an 

inference speed of 8fps and 12fps for TensorRT FP32 

and TensorRT FP16, respectively. It was proven to 

provide the best inference performance for the YOLOv5 

model on the application of object detection and 

classification algorithms. For future works, TensorRT 

provides INT8 optimization as well which can be used 

to other Jetson series like NVIDIA Jetson TX2 and 

NVIDIA Jetson Xavier. This could further optimize the 

inference performance of the YOLOv5 model by 

enabling the FP16 in the TensorRT framework. 
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