

YOLOv5 Inference Performance Analysis on Edge

with different Machine Learning Frameworks

James Rigor Camacho, Angela Caliwag, Wansu Lim

Kumoh National Institute of Technology

Abstract

 In recent years, one of the key innovations in manufacturing automation is the

improvement of object detection and classification through surveillance. To have a more

reliable system that performs monitoring in a manufacturing facility, machines are

integrated with object detection algorithms to help ensure the quality and sorting of

products accurately and efficiently. One of the recent and widely used deep learning-based

object detection algorithms is the YOLOv5, also known as “You Only Look Once” version

5. YOLOv5 is supported by machine learning frameworks in deep learning, providing

different execution performance. The goal of this paper is to determine the best suited

framework for YOLOv5 to achieve the optimal hardware performance on edge based on the

inference time and inference speed of the model. The performance comparative results

revealed that among all the frameworks that were tested on the YOLOv5 model, TensorRT

gave the best overall performance. Its average inference time to process the prepared test

images is 133ms which has a percent difference of 22.11%, 41.70%, and 65.87% from the

other frameworks such as ONNX, TensorFlow, and PyTorch, respectively. In the TensorRT

framework, YOLOv5 was able to increase its hardware performance in terms of inference

speed, yielding 8fps and 12fps, respectively, based on its specified precision of FP32 and

FP16. Hence, YOLOv5 in TensorRT framework can be deployed in a resource-constrained

device such as edge AI with improved inference performance for applications that involve

object detection and classification.

Ⅰ. Introduction

 Manufacturing industries have allowed innovation in

their manufacturing processes to increase their

economic productivity that could keep up with the

increasing demand of the public. The production and

consumption of commodities have increased since the

beginning of the industrial revolution, and it is that

innovation in the manufacturing industries have helped

to transform and to boost their productivity in the

services provided. These services have aimed at

manufacturing flexibility and rapid product innovation

to gain competitive advantages in the manufacturing

industry [1]. Recent innovative ideas in the

manufacturing industry include hybridizing the tracking

system with a Convolution Neural Network (CNN)-

based object detection [2]; and integrating an improved

Singe Short Detector (SSD) network to a defect

detection system in manufacturing [3].

 These methods, such as Faster R-CNN and SSD, for

object detection applications are popular for their

efficient feature extraction ability [3]. The increase in

demand for manufacturing automation has been realized

with use of these deep-learning methods. It has become

the interest in automated factories to develop and

improve the production line performing complex and

time-efficient tasks. However, object detection

methods that have been recently proposed are not all

well-suited to cover complex environments and to

perform time-efficient tasks. Scenes that have

imperfect background can affect the detection

performance of a surveillance system [4]. A

surveillance system in manufacturing would either need

to purchase a better system or use a compact system

integrated with the most efficient and accurate object

detection model to improve the efficiency of object

detection in a complicated background. This brings the

need for a more reliable system that performs

monitoring in a manufacturing facility and integrated

with an object detection algorithm to help ensure the

quality and sorting of products accurately and

efficiently.

 One of the widely used deep learning-based object

detection algorithms is known as “You Only Look Once”

or YOLO. It is a regression-based object detection

system that delivers class probabilities for the

discovered images omitting the region proposal

process [5]. This process was performed differently

and was compared to other state-of-the-art models,

the summary of YOLOv5 comparison to state-of-the-

art models is presented in Table I. From the table, the

methods are analyzed based on the complexity of their

model, flexibility, and inference speed. These are the

factors that greatly affect the hardware performance of

a model when deployed on an edge. In [6], Fast R-CNN

was the inspiration of the framework proposed in the

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

368

paper. It is an object detection model that can achieve

superior performance because of its CNN features. It is

composed of two processes that involves regional

proposal and object recognition [7]. Both parts of fast

R-CNN can determine the object that appears on the

image and specify the region proposal of that image.

Which shows that the structure of this model has

redundant functions and can be further improved to

speedup the computation or processing of object

detection. Morever, the region-based network of the

model is not optimized which brought false detection

results when applied on a complex environment. There

are some studies that have tried to improve the

outpuHence, it would require a lot of processing power

when deployed on an embedded system. To resolve this

constraint in an object detection system, the SSD

method was introduced. In [8], SSD can handle complex

environments by introducing default boxes in different

aspect ratios to a larger input image. The object

detected by the default boxes will be categorized based

on the scores generated by the network. This predicts

the object category and adjusts the box to better fit the

shape of the object. Moreover, the model is flexible

enough to be deployed in an embedded system and even

applied for real-time applications. However, the

inference performance of this model was inefficient for

high quality real-time detection which brought to the

idea of developing a YOLO model. Although the SSD has

an inference speed of 85FPS, which is faster than the

7FPS of a Fast R-CNN model, the latest version of the

YOLO series which is YOLOv5 [9] is capable of

achieving 155FPS in real-time applications. Hence,

among other models, YOLOv5 has been recorded to

achieve faster speed, but lower accuracy. Considering

its potential in the improvement of object detection

algorithms, YOLO has become the hot topic by

researchers to improve the surveillance system in

manufacturing automation. The progression from the

original version of YOLO up until its 5th version, has

outperformed several models especially in terms of

real-time inferencing. It is the latest version released

for the YOLO series that is reliable, efficient, and

simple to use.

 In summary, although there are state-of-the-art

models suitable for object detection applications, these

models have some serious concerns. These concerns

are as follows: 1) object detection algorithms produce

false detection findings when applied in a complicated

environment which indicates the lack of suitability and

right information in the study, 2) the analysis in the

improvement of the inference performance of a model

was inefficient to determine a factor that contributes to

the high quality real-time detection, and 3) deep-

learning models when deployed on an embedded device

would demand a lot of processing power to perform

difficult and time-efficient tasks.

 To address the aforementioned concerns, our study

has focused on benchmarking of YOLOv5 using known

frameworks like TensorRT, ONNX Runtime, Pytorch,

and Tensorflow on edge AI devices. The performance

of the model is analyzed based on the inference

performance of the device. These parameters would

determine which framework has the highest efficiency

of the YOLOv5 on edge AI device. It is, thus, aimed to

attain a high-efficiency YOLOv5 model with the lowest

possible hardware requirements on deep learning

applications. The experimental analysis results will

decide and explain which framework is best suitable for

YOLOv5 on edge to conduct an accurate and efficient

object detection task in a manufacturing environment.

Ⅱ. Methodology

 The overview for the architecture of object

detection and classification using YOLOv5 on different

machine learning frameworks is shown in Fig.1. This

pipeline is composed of input images, YOLOv5 model,

machine learning frameworks (i.e., PyTorch,

TensorFlow, ONNX, and TensorRT), object detection

Table I
Summary of YOLOv5 comparison with state-of-the-art

models for Object detection application

Method Less

Complexity Flexibility Inference

Speed

Fast R-CNN

[6] ✔ ✖ 7 FPS

SSD [7] ✔ ✔ 85 FPS

YOLOv5 [8] ✔ ✔ 155 FPS

 Fig. 1. Overview of the architecture for object detection and classification using YOLOv5 in different ML frameworks.

Input Image YOLOv5
TensorRT

ONNX Runtime

PyTorch

TensorFlow

ML Frameworks

Object Detection
and Classification

Output Image

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

369

and classification algorithm, and output images. A set

of input images is fed into the pretrained YOLOv5 model

where different machine learning frameworks are used

in performing the object detection and classification

algorithm. The output images are expected to have

bounding boxes on the objects detected with their

classifications. The inference time and speed of

detecting objects from each image will also be

outputted which varies depending on the ML framework

that was used.

A. The Network Architecture
 YOLO is a family of deep learning-based object

detection architectures and models pretrained on the

COCO dataset. Before YOLO, the process of classifying

objects in an input image was difficult, slow-moving,

and not very energy efficient. Instead of going through

the same process, the YOLO algorithm simplifies object

detection and classification tasks by treating it as a

regression problem and employing a one-stage

algorithm to predict object classes and positions

immediately. Specifically, it divides the input images

into a grid system and makes predictions on all the

objects detected in the images by computing all the

features at the same time. It can precisely predict and

locate the object using bounding box coordinates.

Dataset: To evaluate the performance of the YOLOv5

model based on the inference speed at different

frameworks, a benchmark data set is utilized. Fig.3

contains the test images that were picked from the pool

of available images online aimed to best demonstrate

the object detection and classification capabilities of

the model. These images show the possible installation

and applications of this study namely, pedestrian,

streets, school facilities, backyard/garden, urban park,

bus stop, and different parts of a house. Moreover,

these images can be found in [10-19]. Hence, the

dataset is important when re-training a model for a

specific application. The more dataset is used to train

the model, the higher the improvement in its accuracy

and performance.

YOLOv5: It is the latest version released for the

YOLO object detection series which is 3x faster as

compared with YOLOv4. By just looking at the image

once, it can detect the objects with an expected speed

of 140 FPS (Frames Per Second). In addition to that, the

size of YOLOv5 is 9x smaller making it suitable to

efficiently deploy on edge AI devices having low

computational capability. YOLOv5 is supported by

machine learning frameworks in deep learning,

providing different execution performance.

Frameworks: YOLOv5 was introduced with a PyTorch

framework. The aspiration of researchers to

continuously improve the architecture of the YOLO

model has brought to the idea of converting a model

defined in PyTorch into a different framework format

(i.e., ONNX, TensorFlow, and TensorRT). These

frameworks have a corresponding effect on the

performance of the YOLOv5 model in terms of

inference speed and accuracy. A benchmarking

analysis on the results is undertaken and compared

statistically and qualitatively with state-of-the-art

models to evaluate the effectiveness of each framework

and investigate the performance of the YOLOv5 model

in an edge AI device.

B. Hardware Platform

 The hardware platform used as an edge AI device in

the experimental setup is the NVIDIA Jetson Nano

device. Fig.2 shows the actual device where the

YOLOv5 model is deployed and performs the object

detection and classification tasks. It is a resource-

constrained device, which means that it has limitations

on resources such as computational power and memory

Fig. 3. Test Images. (a)Pedestrian, (b)Office, (c)Park,

(d)Zidane, (e)Bedroom, (f)Road, (g)Bike, (h)Bus Stop,

(i)Dinning, (j)Bathroom.

a

b

c

d

e

f

g

h

i

j

Fig. 2. NVIDIA Jetson Nano (Edge AI device).

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

370

demand. For the YOLOv5 model, this is the perfect

hardware platform to analyze the hardware

performance of the model with different frameworks.

It is important to understand the behavior of these

models in actual implementation since most applications

would require installation setup. It is compact and

compatible with deep learning-based models,

specifically, YOLO models since the structure have less

complexity and less energy requirements.

Ⅲ. Results and Discussion

 In this section, the experimental setup and results

are discussed to provide a comprehensive

benchmarking analysis of the YOLOv5 model with

different machine learning frameworks.

Experimental Setup: NVIDIA Jetson Nano was used as

the edge AI device to deploy the deep learning network,

YOLOv5 model, in different frameworks for object

detection and classification tasks. This edge AI device

is popular for research that is related to building

autonomous machines and complex AI systems because

of its compactness and capabilities. Despite being small,

it is a powerful edge AI device that is well-suited for

real-world application and experimental setup.

Deploying the model in this device provides the

inference speed and inference time of processing

object detection and classification tasks in every input

image. The hardware performance of the YOLOv5

model in different frameworks is evaluated with the

following parameters: inference speed and inference

time of the model design.

A. Deep Learning Inference Performance

 The YOLOv5 model was implemented with different

frameworks and ran inference on the test images. The

results for the inference time of processing the

prepared test images in different ML frameworks is

shown in Fig.4. Given the trend on the inference time

of these ML frameworks, it gives the intuition that

Pytorch took the longest time to identify and classify

the objects in the test images. On the other hand,

TensorRT is the framework that has the fastest

average inference time of 133ms to process the test

images. Despite that, all the frameworks for YOLOv5

were able to maintain their average inference time for

the succeeding test images starting the 3rd image.

Moreover, among all the test images, the image (i) for

dinning in Fig.3 took the longest for all the frameworks

to detect and classify the objects in the image. The

resulting percent difference of the different

frameworks from the overall average inference time

are 7.71%, 37.23%, 37.46%, and 39.22% for TensorRT,

ONNX, TensorFlow, and PyTorch, respectively.

 For the inference speed of the different frameworks,

the YOLOv5 is deployed on edge AI devices and the

results are recorded during the performance test. The

graph in Fig.5 for inference speed of different ML

frameworks with NVIDIA Jetson Nano shows that

TensorRT FP16 and TensorRT FP32 got the fastest

inference speed among the other frameworks with an

inference speed of 12fps and 8fps, respectively. The

result also shows that the YOLOv5 model at TensorRT

FP16 format is 2x faster than the ONNX framework and

4x faster than the PyTorch framework. In reference to

the average inference speed of the YOLOv5 model in

different frameworks, the percent difference of their

individual results is a 9.95%, 18.46%, 33.20%, 57.14%,

and 75.29% for ONNX, TensorRT FP32, TensorFlow,

PyTorch, and TensorRT FP16, respectively.

 From the overall performance of the YOLOv5 model

on edge for object detection and classification tasks,

TensorRT framework got the best performance based

on the inference time and inference speed results.

TensorRT managed to process all the test images

within an average of 133ms (inference time) with an

inference speed of 8fps for FP32 and 12fps for FP16.

To achieve an optimal performance for the YOLOv5

model, the best-suited framework to use is the

TensorRT FP32. It might not have the fastest inference

speed compared to FP16, but it has the most stable and

high output results, which is 9.95% percent difference

from the overall average inference speed, compared to

all other frameworks.

IV. Conclusion

Fig. 4. Inference time of processing test images in different

machine learning frameworks.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

In
fe

re
nc

e
tim

e
(m

s)

Image

PyTorch

TensorFlow

ONNX

TensorRT

Fig. 5. Inference speed of different ML framework With

NVIDIA Jetson Nano.

3

5

6

8

12

0

2

4

6

8

10

12

14

PyTorch TensorFlow ONNX TensorRT
FP32

TensorRT
FP16

In
fe

re
n

ce
 S

p
ee

d
 (

fp
s)

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

371

 In this paper, a performance comparative study is

performed in the YOLOv5 model with different ML

frameworks to determine which model architecture is

best suited for the application of object detection and

classification tasks. This paper utilized an edge AI

device to observe the hardware performance of the

YOLOv5 model through its inference time and inference

speed. Its goal is to develop a YOLOv5 model that can

run on low-resource devices and give real-time

performance. In terms of overall performance for the

YOLOv5 model, the acquired average inference speed

is 6fps which is 2x slower on PyTorch but 2x faster on

the TensorRT FP16 framework. For inference time,

TensorRT got the fastest average time of 133ms which

has a percent difference of about 22.11%, 41.70%, and

65.87% for ONNX, TensorFlow, and PyTorch,

respectively. Therefore, based on the results,

TensorRT is the best suited framework for YOLOv5

with an average inference time of 133ms and an

inference speed of 8fps and 12fps for TensorRT FP32

and TensorRT FP16, respectively. It was proven to

provide the best inference performance for the YOLOv5

model on the application of object detection and

classification algorithms. For future works, TensorRT

provides INT8 optimization as well which can be used

to other Jetson series like NVIDIA Jetson TX2 and

NVIDIA Jetson Xavier. This could further optimize the

inference performance of the YOLOv5 model by

enabling the FP16 in the TensorRT framework.

ACKNOWLEDGMENT

This work was supported by the Ministry of SMEs and Start-

ups, S. Korea (S2829065, S3010704), and by the National

Research Foundation of Korea (2020R1A4A101777511,

2021R1I1A3056900).

References

[1] Bi Xinhua, Chen Taibo, Yu Baojun and Yu Cuiling,

"Manufacturing flexibility and rapid product innovation:

Two key manufacturing decision issues in turbulent

business environment," 2009 Chinese Control and

Decision Conference, 2009, pp. 4963-4967, doi:

10.1109/CCDC.2009.5194921.

[2] M. Jiang, K. Shimasaki, S. Hu, T. Senoo and I. Ishii, "A

500-Fps Pan-Tilt Tracking System With Deep-

Learning-Based Object Detection," in IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 691-698, April

2021, doi: 10.1109/LRA.2020.3048653.

[3] J. Yang, S. Li, Z. Wang and G. Yang, "Real-Time Tiny Part

Defect Detection System in Manufacturing Using Deep

Learning," in IEEE Access, vol. 7, pp. 89278-89291,

2019, doi: 10.1109/ACCESS.2019.2925561.

[4] Y. Tian, R. S. Feris, H. Liu, A. Hampapur and M. Sun,

"Robust Detection of Abandoned and Removed Objects in

Complex Surveillance Videos," in IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and

Reviews), vol. 41, no. 5, pp. 565-576, Sept. 2011, doi:

10.1109/TSMCC.2010.2065803.

[5] W. Liu et al. (Dec. 2015). “SSD: Single shot multibox

detector.”[Online].Available:https://arxiv.org/abs/1512.

02325

[6] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only

look once: Unified, real-time object detection. In: CVPR.

(2016)

[7] S. Hsu, C. Huang and C. Chuang, "Vehicle detection using

simplified fast R-CNN," 2018 International Workshop on

Advanced Image Technology (IWAIT), 2018, pp. 1-3, doi:

10.1109/IWAIT.2018.8369767.

[8] H. Li, L. Deng, C. Yang, J. Liu and Z. Gu, "Enhanced YOLO

v3 Tiny Network for Real-Time Ship Detection From

Visual Image," in IEEE Access, vol. 9, pp. 16692-16706,

2021, doi: 10.1109/ACCESS.2021.3053956.

[9] X. Wang, H. Ma, X. Chen and S. You, "Edge Preserving

and Multi-Scale Contextual Neural Network for Salient

Object Detection," in IEEE Transactions on Image

Processing, vol. 27, no. 1, pp. 121-134, Jan. 2018, doi:

10.1109/TIP.2017.2756825.

[10] M. Waghorn and (image: Getty), “Children can’t safely

cross the road until they are over 14 years old, scientists

warn,” Mirror.co.uk, 20-Apr-2017. [Online]. Available:

https://www.mirror.co.uk/news/uk-news/children-cant-

safely-cross-road-10259133.

[11] “3d visualization architecture,” Service4money.com.

[Online]. Available:

https://www.service4money.com/3d-visualization-

architecture/.

[12] “Dogs-and-cats-hotel-by-raulino-Silva-arquitecto-

00,” Aasarchitecture.com. [Online]. Available:

https://aasarchitecture.com/2020/10/dogs-and-cats-

hotel-by-raulino-silva-arquitecto.html/dogs-and-cats-

hotel-by-raulino-silva-arquitecto-00/.

[13] “Ancelotti looks forward to Madrid-Bayern showdown

with ‘icon’ Zidane,” Loop News, 02-Apr-2017. [Online].

Available: https://tt.loopnews.com/content/ancelotti-

looks-forward-madrid-bayern-showdown-icon-zidane.

[14] H. Mendelsohn, “If you’ve always wanted to sleep on a

cloud, copy these white bedroom ideas,”

Housebeautiful.com, 01-Apr-2012. [Online]. Available:

https://www.housebeautiful.com/room-

decorating/colors/g1215/white-bedrooms/.

[15] S. Davis, “Seattle takes new steps to fine-tune traffic

signals for people walking and rolling during COVID-19

health crisis,” Seattle.gov, 07-May-2020. [Online].

Available:

https://sdotblog.seattle.gov/2020/05/07/seattle-takes-

new-steps-to-fine-tune-traffic-signals-for-people-

walking-and-rolling-during-covid-19-health-crisis/.

[16] “Bloomberg,” Bloomberg News.

[17] “YOLOv5 environment construction and target detection

- Programmer Sought,” Programmersought.com.

[Online]. Available:

https://programmersought.com/article/52126720263/.

[18] “Group of people dining concept,” 123Rf.com. [Online].

Available:

https://www.123rf.com/photo_67127031_group-of-

people-dining-concept.html.

[19] Thetrendspotter.net. [Online]. Available:

https://www.thetrendspotter.net/small-bathroom-

design-ideas/

제2회 한국 인공지능 학술대회(The 2nd Korea Artificial Intelligence Conference)

372

