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Abstract  

 
For pedestrian-view intersection classification model that can run on multi-domain 

input, i.e., indoor and outdoor, we adopt method from Kim et al., [1]. The training 

objective is to not extract domain related features by using negative entropy loss on 

domain prediction. However, with similar goal, Alvi et al. [2] utilize confusion loss, i.e., 

cross entropy to uniform distribution. In this work, we compare the two losses on our 

multi-domain pedestrian-view intersection classification model. 

 

 

Ⅰ. Introduction  

To assist navigation of small robots, several 

researchers [3, 4] propose pedestrian-view 

intersection classification methods. However, these 

models are implemented only on one domain, i.e., 

outdoor domain. To incorporate both indoor and 

outdoor domains, we adopt method from Kim et al. [1] 

in order to remove the domain information in the 

extracted features. In this paper, we focus on 

comparing two losses, i.e., negative entropy and 

confusion loss, utilized in multi-domain training to 

reduce domain information in the extracted features.   

 

Ⅱ. Methodology  

We adopt model from Kim et al. [1] to train our 

multi-domain intersection classification model. As 

seen in Fig. 1, the architecture consists of two 

branches. The first branch is utilized to predict 

intersection categories 𝒚̂ ∈ ℝ2 and the second branch 

is utilized for domain prediction 𝒛̂ ∈ ℝ2. The training 

objective is to prevent the base network ℱ to extract 

domain information while still extracting the features 

related to the intersection classification. To correctly 

classify the intersection, we train the model to 

minimize cross entropy loss between prediction 𝒚̂ and 

its ground truth 𝒚. In addition to the loss, to remove 

the domain from the features extracted by the ℱ ,  

Kim et al. [1] incorporate negative entropy loss which 

has to be minimized by ℱ as: 

 min
ℱ

𝛼 (∑ 𝑧̂𝑖 log 𝑧̂𝑖

2

𝑖=1

) , (1) 

where 𝛼  is weighting hyperparameter. In order to 

minimize this loss, ℱ should not extract any domain 

information so that the entropy of 𝒛̂ is maximized, i.e., 

unconfident 𝒛̂  prediction. The loss value and its 

gradient are visualized in Fig. 2(a). 

 

 

Instead of negative entropy, with similar goal to the 

negative entropy loss, some researchers [2] utilize 

confusion loss, i.e., cross entropy loss with respect to 

the uniform distribution as: 

 min
ℱ

𝛼 (− ∑ 0.5 log 𝑧̂𝑖

2

𝑖=1

) . (2) 

This loss is minimized if the domain predictor predicts 

0.5 confidence for each indoor and outdoor class, i.e., 

Figure 1. Architecture setup for our multi-domain pedestrian-view 
intersection classification during training. At test time, only the base 
network and the intersection classifier are utilized. 
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it is unable to predict the domain from the extracted 

features. The loss value and its gradient can be seen 

in Fig. 2(b). In this work, we focus on comparing Eq. 

(1) and (2) in our pedestrian-view intersection 

classification model. 

Additionally, following Kim et al. [1], we also add an 

adversarial training for the domain prediction. ℱ 

maximizes cross entropy between domain prediction 𝒛̂ 

and its ground truth 𝒛. On the other hand, ℋ minimizes 

the loss. During test, only 𝒚̂  is considered for 

accuracy measurements. 

 
Figure 2. Graphs representing loss values and their gradients with 
respect to the prediction: (a) 𝑦 = 𝑥 𝑙𝑜𝑔 𝑥 + (1 − 𝑥) 𝑙𝑜𝑔(1 − 𝑥) similar to 
negative entropy in Eq. (1), (b) 𝑦 = −0.5 𝑙𝑜𝑔 𝑥 − 0.5 𝑙𝑜𝑔(1 − 𝑥) similar 
to confusion loss in Eq. (2). In this graph, x-axis is confidence of 
indoor class 𝑧̂1 and since the final output is softmax, confidence of 
outdoor class is  𝑧̂2 = 1 − 𝑧̂1 = 1 − 𝑥.  

Ⅲ. Experiments  

For indoor dataset, we collected 2,020 and 791 

images for non-intersection and intersection 

categories, respectively. The dataset is sampled from 

various YouTube videos recorded in multiple scenes. 

For outdoor dataset, we collected 2,092 and 2,713 

images for non-intersection and intersection 

categories, respectively. The dataset is recorded in 

urban areas and parks. Each indoor and outdoor 

dataset is first divided into train, validation, and test 

sets with ratio of 5:2:3. Then, we combine the train 

and validation set of both domains as the overall 

training and validation sets. However, we test our 

model in each domain separately. 

For our model, we utilize ImageNet-pretrained 

ResNet-18 [5]. The 𝒢  and ℋ  branches start from 

the third residual block. Fine-tuning using our dataset 

is conducted using Adam, learning rate 10-5, weight 

decay 10-6, and batch size 64. The highest validation 

accuracy out of 500 training epochs are selected for 

testing. We run each experiment five times and report 

the average. 

For training, the input image is first cropped into 

random size between range of 0.8 to 1.0 from the 

original size then resized to 224×224. Additionally, 

we add random horizontal flip, contrast, brightness, 

sharpness, and color balance augmentation. Finally, we 

normalize the input values to range 0 to 1. For 

preprocessing during validation and test, we only 

resize and normalize the input. 

Table 1 shows the accuracy comparisons between 

models trained using negative entropy loss and models 

trained using confusion loss on various α  settings. 

With higher values of α, model trained using negative 

entropy tends to perform better than using confusion 

loss. This phenomenon can be caused by the gradients. 

As seen in Fig. 2, confusion loss tends to have steeper 

gradient than the negative entropy loss which makes 

it more susceptible with higher α.     

 
Table 1. Test accuracy comparisons between models trained on 
negative entropy and confusion loss on different weighting 𝛼.  

 Negative Entropy  

(Eq. (1)) 

Confusion Loss  

(Eq. (2)) 

α Indoor Outdoor Indoor Outdoor 

1 80.07 68.62 69.61 57.16 

0.1 80.67 68.90 73.99 63.73 

0.01 80.92 68.08 80.75 67.64 

0.001 81.03 67.85 80.82 68.25 

0.0001 79.93 67.60 80.78 68.37 

 

Ⅲ. Conclusion  

In this paper, we compare two losses, i.e., negative 

entropy and confusion loss, utilized in multi-domain 

setting of pedestrian-view intersection classification. 

The results show that using a higher weighting factor, 

negative cross entropy is more stable compared to the 

confusion loss. 
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