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Abstract—In cognitive radio network (CRN) cognitive radio users 
(CRUs) try to utilize the radio spectrum of the licensed primary 
uses (PUs) without creating disturbances. To do that efficient 
spectrum sensing is one of the key jobs at the SUs part. As the 
individual user sensing performance is not considered authentic 
and reliable in the multiple channel effects of fading, shadowing,  
and receiver uncertainties, therefore, cooperative spectrum 
sensing (CSS) provides an optimal solution to be deployed in these 
environments. One major problem for CSS is to deal with 
abnormal sensing reports of the reporting users. A malicious user 
(MU) reports false sensing data to the fusion center (FC) so that to 
create confusion about the PU’s existence. In this paper particle 
swarm optimization (PSO) algorithm is tested to reduce the impact 
of MUs in the FC decision. The cooperative users report their 
channel findings to the FC, where PSO tries to find the existence 
of any abnormality in the sensing data. The results are confirmed 
through extensive simulation at different combination of MUs that 
shows the proposed scheme effectiveness.  
 

Index Terms— Cognitive radio network, particle swarm 
optimization, fusion center, fading channel, malicious users. 
 

I. INTRODUCTION 
He tremendous growth in wireless communication is 
observed in the last decade to meet with the growing 

number of wireless applications and devices [1]. The different 
technology generations in wireless communications such as 1G 
to 4G have played their role in providing reliability, high data 
rate, and minimum latency. Now the challenge in wireless 
communication is to allow devices to connect and communicate 
to each other at any time and anywhere. The evolution process 
of the 5G technology is expected to provide a significant 
contribution to public safety, energy efficiency, spectrum 
management, low latency, and better data rate [2],[3]. As the 
5G communication technology is on the horizon with the 
internet of things (IoT) as its heart, therefore the IoT based 
devices will have a key role in the implementation structure of 
the 5G network [4].  

The word IoT introduced by Ashton in [5] is a technological 
revolution to bring heterogeneous networks under the common 
IoT umbrella. Iot can change the landscape of numerous 

industries tremendously. It will also help in the improvised 
logistic learning, automation, intelligent transportation, and e-
health care units as in [6],[7]. The enhancement of computation, 
reliable communication, and connectivity procedures in this 
paradigm is the major focus from a technological perspective.  
Out of the many, however, radio spectrum management and 
connectivity are the most crucial and challenging 
responsibilities yet to work out by the research community. It is 
expected that soon a large number of wireless devices will be 
in interconnection that may demand more spectrum resources 
[8]. The employment of IoT without cognition is similar to an 
awkward stegosaurus with all brawn and no brains [9]. The 
rapid increase in wireless communication technology is 
demanding new wireless services in both the used and unused 
parts of the radio spectrum [10]. The federal communication 
commission (FCC) has already legalized spectrum sharing in 
the 5.4 GHz band, where devices sense the military radar 
existence before accessing the channel [11]. 

Cognitive radio (CR) based wireless communication 
technology is intelligent enough with efficient radio spectrum 
utilization ability that learns and adjust the device’s parameters 
relevant to the operation environment [12]. The primary users 
(PUs) in CR networks (CRNs) are legalized and free to transmit 
and access resources at any time, while the cognitive radio users 
(CRUs) also called the unlicensed users are allowed to transmit 
only when the channel is declared free of the PU. Therefore, it 
is very much critical in CRN to detect the primary activity 
promptly, otherwise, their incorrect detection could result in a 
false alarm and reduces the CRUs’ opportunity to access the 
available spectrum. Similarly, interference is also expected to 
the ligitimate PUs from the CRUs transmission in case of any 
misdetection.  

As spectrum sensing results of a single CRU are often limited 
by the fading and shadowing in the wireless channel [13]. 
Therefore, cooperative spectrum sensing (CSS) is one of the 
alternatives that can resolve this issue smartly. In the CSS, all 
sensing users forward their local sensing findings to the fusion 
center (FC), where the final decision is made about the PU’s 
existence [14]. However, the presence of malicious users (MUs) 
in CSS is limiting the performance, where they report false 
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sensing reports to the FC to compromise its global decision. 
Significant work exists in the literature about reducing MUs 
effects in CSS.  

A robust scheme that dealt with the Yes MUs is discussed in 
[15]. Similarly, a sequential cooperative scheme with minimum 
sensing reports and improved sensing performance in a 
malicious environment is discussed in [16]. In the soft 
combination schemes such as equal gain combination (EGC) 
and maximum gain combination (MGC), overall sensing 
statistics of cooperative users are combined to make a global 
decision [17]. Similarly, hard combination schemes allow the 
sensing users to report their hard decisions to the FC, where 
these decisions are combined using logical-OR, logical-AND, 
and majority voting schemes [18]. In [19], a genetic algorithm 
is employed to optimize the detection and false alarm 
probabilities with  reducing sensing error. The particle swarm 
optimization (PSO) is implemented for the optimization of 
thresholds to enhance spectral efficiency and detect potential 
spectrum assets [20]. The Kullback-Leibler (KL) divergence 
scheme is investigated in [21] against malicious users based on 
users’ soft energy collections. A combination of the double-
sided neighbor distance (DSND) and outlier detection scheme 
is used as the GA algorithm fitness function in [22],[23] to 
reduce error probability in the FC decision.  

This paper investigated the use of the PSO algorithm to 
search PU activity in the licensed spectrum. The PSO-based 
scheme in the paper enables the FC to overcome the effects of 
MUs. The cooperative cognitive users sense and inform FC 
about the PU, where the FC employs the PSO algorithm to 
derive the most relevant conclusion to the actual PU status.  A 
composite outlier score is determined using one-to-many-
hamming distance and z-score as the fitness function of the PSO. 
The PSO select the sensing report with minimum outlying 
results, out of the PSO population on behalf of cooperative 
users. Based on the selection results of the PSO algorithm, EGC, 
MGC, and majority voting schemes are further used to make 
the final decision. The proposed scheme results are confirmed 
in the presence of NO, YES, OPPOSITE, and RANDOM 
categories of MUs. In the YES malicious report a high-energy 
signal is reported to the FC regardless of the actual PU activity, 
while the NO malicious always reports a low-energy signal. 
Similarly, the OPPOSITE user reports always negate the actual 
PU statistics. In this work, the RANDOM malicious nature is 
assumed similar to the OPPOSITE probabilistically.  
The remaining paperwork is divided into these sections. Section 
II, discusses the system model. In Section III detailed analysis 
of the PSO algorithm is discussed for finding accurate sensing 
data before any soft and hard combination schemes. Section IV 
is about simulation results, while the paper is concluded in 
Section V.   

II. SYSTEM MODEL 
 

As the individual user sensing is experiencing disturbances 
due to the wireless channel effects, therefore, the user’s 
cooperation in the figure helps in reducing and overcoming the 
sensing problems experienced by the single user. The objective 

of this paper is to reduce false alarm fP and misdetection mP that 

further leads to a reduce in the error probability e f mP P P= + , 

where 1m dP P= − . 

 
Figure 1. Centralized cooperative spectrum sensing 

environment. 
 
In figure 1 the cooperative users including normal and MUs 

(YES, NO, OPPOSITE, RANDOM) sense the PU and report 
their sensing statistics to the FC. Based on the received sensing 
notifications of the users the FC makes its global decision of the 
channel. 

The thj CRU binary hypothesis at the thl time slot is [15],[21]. 
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where, 0H hypothesis shows the availability of the PU channel 

and 1H shows the channel occupancy by the licensee. ( )jy l  is 

the signal received by the thj CRU in lth time slot. ( )jn l  is the 

additive white gaussian noise at the thj CRU, jh is the channel 

gain and ( )s l is the PU transmitted signal in lth time slot. 
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Here in (2) K is the total number of samples in the thi sensing 
interval. The energy representation of each cooperative user is 
similar to the gaussian random variable under both 0H and 1H
according to the central limit theorem as [15],[21]  
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In (3), jη is the signal-to-noise ratio (SNR) between thj CRU 
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and PU. Similarly, 2
0 0( , )µ σ and 2

1 1( , )µ σ  are the mean and 

variance values of the energies reported under the 0H  and 1H  
hypotheses. 

III. PROPOSED SCHEME AT THE FC 
In 1952 Eberhart and Kenedy derive the idea of PSO from bird 

flocking and fish swarming in [24]. PSO algorithm takes the 
help of the local and collective intelligence in finding enhance 
solution to the problems, where every novel population (group) 
is expected to improve.  

A flowchart of the proposed CSS is shown in figure 2. In the 
model, individual users sense the PU channel and inform FC of 
their reports to form PSO population. The FC employs the PSO 
algorithm to determine sensing reports with minimum outlying 
results that closely resemble the actual PU status. The selected 
sensing reports are then inputted into the fusion combination 
schemes for making a final decision. 
 
Step 1: Sensing data collection  
 

The history matrix formed at the FC consisting of soft energy 
reports of the user’s in 0N sensing intervals is as  
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Here ijE in (4) is the energy information of the thj user in the 
thi interval. M is the total sensing users and 0N is total sensing 

intervals to form the PSO population. 
The FC further modifies the particles position to note the 

difference between the sensing observations of each user with 
all other users in (5) as  
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, that indicates the average of the 

reports reported by all other users while taking out the results 
of the given thj user.  
 
Step 2.1 Outliers identification using one-to-many-sensing-
distance 

The results in (4) and (5) are used to determined outlying 
factors based on the one-to-many sensing distances ( )ijd for 

the thj CRU in the thi sensing particle as 
'

0( ) . 1,..., , 1,..., .j ij iji E E i N j M= − ∈ ∈d  (6) 

Similarly, the total outlying score of the thi interval for all 
cooperative users is determined as 
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where the measurement in (7) is made for the 0N intervals and 
the results are collected as 

01 2 3 ... ,
T

N =  d d d d d  (8) 

where d is the outlier score results for all the 0N sensing 
intervals. This measurement shows how far the report of each 
cooperative user is from the average sensing reports received 
from all other users. It will separate those sensing reports during 
which MUs and any other abnormality were misleading FC’s 
final decision. 
 
Step 2.2 Outliers identification using z-score 
 

In step 2, z-score employed as outlier score measurement 
based on sensing reports received from the users as  
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 is the mean value while ( )iσ  is the 

standard deviation of the thi  PSO population particle. ( )j io  is 

outlying factor using z-score outlying for the thj user report in 

the thi interval of the history log.  
A sum of the z-score measurements for all particles is made to 

guarantee the authenticity of each thi interval as: 
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Hence, the total z-score results for the 0N particles are collected 
as 

01 2 3 ... .
T

N =  o o o o o  (11) 

 
The final selection of the sensing data received from the 

normal, maliciously reporting users is determined, and the one 
with a minimum abnormality is selected. The criteria for 
suitable particle selection is made using the results in (6) and (9) 
as 

( ) .i ii = +f d o  (12) 
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The normal sensing reports that have minimum abnormality 
obtain a minimum score using (12) in comparison with 
disturbed sensing reports due to malicious users. 
 
Step 3: Changes in PSO population 
 

The particle with a minimum outlying score in E based on (12) 
is selected as the global best position g . Selection of the local 
best particles is made as P E= . The position and velocities of 
all these particles are initially set to zero that are further 
modified using the collective and individual intelligence as  

( 1) 1 1 2 2( ) ( ),i j i j ij ij ijV V C R P E C R E+ = + × × − + × × −jg  (13) 

where 1C  and 2C  are the learning coefficients representing 

the individual and social contribution of the particles. 1R  and

2R  are uniformly distributed random numbers in the range 0 to 
1. 

The particle velocities are next rounded to the following two 
extremes as  
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The measured velocity in (14) is used to update the particle 
position as  

( 1) ( 1) ,i j ij i jE E V+ += +  (15) 

where ( 1)i jE + are the modified population reports for the thj
CRU. 
 
Step 4: Changes in the local best and global best 
 

The fitness score of the population in (15) is determined 
similar to the fitness in (15). The local best particle positions 
are looked for any modification as 

0
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The local best position fitness in (15) is compared with the 
initially local best P in (16). Similarly, the fitness of updated 
local best particles in (16) is compared with the global best 
particle g to look for any improvement in the global best 
particle as 

0
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

= ∀ ∈


 g
g

g
 (17) 

In (17), if any of the new local best particles in the PSO 
population has its fitness found to be optimum with the 
minimum outlying score using (12) in comparison with the 
global best, and then it has to replace the global best. This 
search of the PSO continues until the stopping criterion is met.   

The final global best particle at the end of desired iterations is 
elected as the accurate sensing report on behalf of all 
cooperative users for a global decision at the FC.  
 
Step 5: Soft and Hard decisions 
 

The final global best particle g  is utilized at the FC in the 
EGC, MGC, and majority voting schemes for making final 
recommendations about the PU channel. The EGC scheme 
gives equal weightage to the sensing reports of all cooperative 
users and takes its decision as  
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The detection and false alarm probabilities _d EGCP  and 

_f EGCP  determined against EGC based on its decision is  
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In the MGC scheme, higher weights are assigned to the 
sensing reports with higher SNR values and low weights to 
report with low SNR  
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The decision is made by the majority voting schemes is shown 
in (22), where the FC counts the number of CRUs with energies 
exceeding threshold as 
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The three commonly used hard combination schemes are the 
majority voting, OR and, AND fusion combination schemes. In 

the majority voting scheme
2
Mk = , where M is the total 
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number of cooperative CRUs. The detection and false alarm 
probabilities measurement of the majority voting hard decision 
schemes based on the best selection of the PSO at the FC are as 
follows 

_ 1
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where _d MVP and _f MVP  are cooperative detection and false 
alarm probabilities of the majority voting schemes when PSO 
is used as a detection mechanism at the FC. 

IV. SIMULATIONS AND RESULTS 
 

The total number of CRUs in this part of the simulation is 
11M = . Out of the total users, 7 users are selected normal and 

4 of them are randomly selected as YES, NO, OPPOSITE and 
RANDOME. The sensing time is kept at 1 ms with 270 samples. 
A total of 100N = sensing iterations are selected. The interval 
of sensing during which RANDOM perform the malicious act 
is adjusted between 1 and N . The size of the PSO population 

is 0N M×  with total 0N particles representing sensing reports 

of the M sensing users. In this section of the simulation results, 
MUs are deliberately selected first  as YES and then changed to 
NO. It is visible from the results in figure 2, that the EGC, MGC, 
and majority voting schemes using PSO have improved 
detection results against the conventional combination schemes. 
Since NO and YES users are almost identical in nature hence 
the detection response in both the cases when only YES and the 
one with only NO users’ considerations are very much similar. 
The PSO-based MGC scheme in figure 2 has superior results 
among all with better receiver operating characteristics (ROC) 
results followed by the EGC scheme. The majority voting has 
resulted in minimum detection results compared with EGC and 
MGC schemes. 
 

 
Figure 2. ROC curve, when YES and NO users contributed in 

sensing. 
 
In the second part, the malicious response is first selected as 
OPPOSITE and then it is changed to RANDOM in figure 3. 

Here the PSO-based MGC scheme show improved response 
with high detection and low false alarm results compared with 
EGC and majority voting. It is noticeable that the reliability of 
the PSO-based combination techniques as compared with 
conventional schemes is sufficiently high in figure 3. The 
presence of the RANDOM user in figure 3 affects the sensing 
performance hazardously than the OPPOSITE. The superiority 
of the proposed scheme can be seen in both the OPPOSITE and 
RANDOM user’s participation in CSS. 

 
Figure 3. ROC curve, when OPPOSITE and RANDOM users 

contributed in sensing. 
 
In this section of the simulation results, MUs are equally 

taken into consideration to see the improvements in the 
performance of the proposed PSO-based scheme in figure 4. 

The graphical results in figure 4 under the consideration of 
all 4 categories of MUs with high upper ROC curves for the 
proposed scheme show the reliability of the proposed scheme. 
This leads to a clear improvement in the sensing response of the 
proposed scheme as compared with conventional combination 
schemes. In figure 4, the PSO-based MGC scheme has an 
accurate detection response as compared with the PSO-based 
EGC, PSO-based majority voting, and traditional schemes. 
 

 
Figure 4. ROC curve, when YES, NO, OPPOSITE and RANDOM 

users contributed in sensing. 
 

V. CONCLUSIONS 
As the participation of MUs reduces the effectiveness of 
cooperation of the CIoT. It is therefore necessary to overcome 
and restrict MU’s decisions in CSS to avoid any confusion due 
to their false sensing reports. This paper employed the use of 
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the PSO algorithm to make the FC decision authentic and 
reliable in the presence of different categories of MUs. The FC 
is allowed to take its global decision of the PU existence-using 
EGC, MGC, and majority voting schemes based on the results 
of the proposed PSO-based scheme. This leads FC decision to 
be more accurate in presence of YES, RANDOM, OPPOSITE, 
and NO categories of MUs in both the soft and hard 
combination schemes. Simulation results further confirmed the 
authenticity of PSO based scheme with high detection and 
minimum false alarm probability results for proposed schemes 
at the FC. 
 

REFERENCES 
 
[1] A1. Agarwal, G. Mishra, and K. Agarwal, “The 5th 
generation mobile networks-key concepts, networks, 
architecture and challenges,” American Journal of Electrical & 
Electronics Engineering, Vol. 3, No. 2, pp. 22-28, 2015. 
[2] T2. Q. Duong and N. –S. Vo, “Wireless communication 
and network for 5G and beyond,” Mobile Networks and 
applications, Vol. 24, No. 2, pp.443-446, 2019. 
[3] B3.-S. P. Lin, F. J. Lin, and L. –P. Tung, “The role of 5G 
mobile broadband in the development of IOT, big data, cloud 
and SDN,” Communication and Network, Vol. 8, No. 1, pp. 9-
21, 2016. 
[4] W5. Ejaz, A. Anpalagan, M. A. Imran et al, “Internet of 
things (IoT) in 5G wireless communication, “IEEE Access, Vol. 
4, pp. 10310-10314, 2016. 
[5] K6. Ashton, “Internet of Things”: in the Real World, 
Things Matter More than Ideas, Springer, Berlin, Germany, 
2009. 
[6] R8. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future 
Internet: The Internet of Things Architecture, Possible 
Applications and Key Challenges,” in Proceedings of the IEEE 
International Conference on  Frontiers of Information 
Technology, Islamabad, Pakistan, December 2012. 
[7] A9. A. Khan, M.H. Rehmani, and A. Rachedi, “When 
cognitive radio meets the internet of things,” in proceedings of 
the IEEE International Wireless Communication & Computing 
Conference (IWCMC), Paphos, Cyprus, September 2016. 
[8] A10. Al-Fuqaha, M. Guizani, M. Mohammadi, M. 
Aledhari, and M. Ayyash, “Internet of things: a survey on 
enabling technologies, protocols, and applications,” IEEE 
Communications Survey & Tutorial, Vol. 17, No. 4, pp. 2347-
2376, 2015. 
[9] Q11. Wu, G. Ding, Y. Xu et al., “Cognitive Internet of 
Things Journal, Vol. 1, No. 2, pp. 129-143, 2014. 
[10] A12. Ghasemi, and ES. Sousa, “Spectrum sensing in 
cognitive radio networks: requirements, challenges and design 
trade-offs,” IEEE Communications Magazine, Vol. 46, No.4, 
pp. 32-39, 2008. 
[11] S13. Mishra, A. Sahai, and R. Brodersen, “Cooperative 
Sensing Among Cognitive Radio, “ IEEE International 
Conference on Communications, Istanbul, Turkey, 2006. 
[12] S14. Haykin, “Cognitive radio: Brain-empowered wireless 
communications,” IEEE Journal on Selected Areas in 
Communications, Vol. 23, No.2, pp. 201-220, 2005. 

[13] E18. Axell, G. Leus, EG. Larsson, and HV. Poor, 
“Spectrum sensing for cognitive radio : State-of-the-art and 
recent advances,” IEEE Signal Processing Magazine, Vol. 29, 
No.3, pp.101-116, 2012. 
[14] Y19. He, J. Xue, T. Ratnarajah, M. Sallaturai, and F. Khan, 
“On the Performance of Cooperative Spectrum Sensing in 
Random Cognitive Radio Networks,” IEEE Systems Journal 
2016, pp. 1-12, 2016. 
[15] P22. Kaligineedi, M. Khabbazian, and VK. Bhargava, 
“Malicious user detection in a cognitive radio cooperative 
sensing system,” IEEE Transactions on Wireless 
Communications 2010, Vol. 9, No.8, pp. 2488-2497, 2010. 
[16] VV23. Hiep, and I. Koo, “A Sequential Cooperative 
Spectrum Sensing Scheme Based On Cognitive User 
Reputation,” IEEE Transactions on Consumer Electronics 2012, 
Vol.58, No.4. pp.1147-1152, 2012. 
[17] D26. Hamza, S. Aïssa, and G Aniba, “Equal Gain 
Combining for Cooperative Spectrum Sensing in Cognitive 
Radio Networks,” IEEE Transactions on Wireless 
Communications 2014, Vol.13, No.8, pp. 4334-4345, 2014. 
[18] N28. Marchang, R. Rajkumari, SB. Brahmachary, and A. 
Taggu, “Dynamic Decision Rule for Cooperative Spectrum,” 
International Conference on Electrical, Computer and 
Communication Technologies (ICECCT); Coimbatore, India, 
2015.  
[19] S30. Bhattacharjee, “Optimization of Probability of False 
alarm and Probability of Detection in Cognitive Radio 
Networks Using GA,” 2nd IEEE International Conference on 
Recent Trends in Information Systems. Kolkata, India, 2015 
[20] A34. Rauniyar, and SY. Shin, “Improved Detection 
Performance of Energy Detector by Optimization of Threshold 
Using BPSO Algorithm for Cognitive Radio Networks,” 2nd 
International Conference on Industrial Application Engineering; 
2015. 
[21] N37. Gul, IM. Qureshi, A. Omar, A. Elahi, and M. S. Khan, 
“History based forward and feedback mechanism in 
cooperative spectrum sensing including malicious users in 
cognitive radio network,” PLOS One, Vol. 12, No. 8, 2017. 
[22] N38. Gul, and A. Naveed, “A Combination of Double-
Sided Neighbor Distance and Genetic Algorithm in 
Cooperative Spectrum Sensing Against Malicious Users,” 14th 
International Bhurban Conference on Applied Sciences & 
Technology (IBCAST). Islamabad, 2017. 
[23] N39. Gul, IM. Qureshi, A. Elahi, and I. Rasool, “Defense 
against Malicious Users in Cooperative Spectrum Sensing 
Using Genetic Algorithm,” International Journal of Antennas 
and Propagation 2018, Article ID: 2346317,2018. 
[24] A41. M. Vargas, and A. G. Andrade, “Comparing Particle 
Swarm Optimization Variants for a Cognitive Radio Network,” 
ELSEVIER Applied Soft Computing, Vol.13, No.2, pp. 1222-
1234, 2013. 

466


