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A Distributed Resource Allocation Algorithm for
Task Offloading in Fog-enabled IoT Systems

Hoa Tran-Dang, Dong-Seong Kim

Abstract—In the loT-based systems, the integration of fog
computing allows the fog nodes to offload and process tasks
requested from IoT-enabled devices in a distributed manner to
reduce the response delay. However, achieving such a benefit
is still challenging in the heterogeneous fog systems in which
long task queues of powerful fogs can contribute to an average
long delay of task execution. To handle the conflict of resource
request for task processing this paper proposes a distributed
fog resource allocation algorithms, namely MaxRU (Maximum
Resource Allocation). Through the simulation analysis, MaxRU
show potential advantages in reducing the average delay in
the heterogeneous fog environment compared with the existing
solutions.

Index Terms—Fog-enabled IoT Systems, Fog Computing, Task
Offloading, Resource Allocation, Workflow.

I. INTRODUCTION

The Internet of Things (IoT) paradigm has been widely
adopted in practical applications such as smart cities [1],
smart grids [2] since it enables the interconnection and
interoperability of IoT-enabled physical and virtual entities
to create smart services and informed decision makings for
monitoring, control, and management purposes [3]. Currently,
the mutual benefits gained from the combination of fog and
cloud enable the resulting loT-fog-cloud systems to provide
uninterrupted IoT services with various QoS requirements
for the end users along the things-to-cloud continuum [4].
However, employing the fog computing raises another concern
regarding decisions whether the tasks should be processed in
the fog or in the cloud. There are many factors impacting
on the offloading decision policies such as offloading criteria,
application scenarios [5]. Basically, in the most of existing of-
floading techniques the tasks are probably offloaded to the best
surrogate nodes (i.e., offloadees), which have the most ample
resources (e.g., large storage capacity, high speed processing)
and reliable communication network conditions in terms of
delay, bandwidth between them and their neighbors, the IoT
devices, and even the cloud servers. However, such the fog
offloading solutions face significant challenges regarding the
workload distribution among the complicated heterogeneous
fog devices characterized by different computation resources
and capabilities. The challenge is further amplified by increas-
ing the rates of service requests, which probably make the
task queues of resource-rich fog nodes longer. As a result, the
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requirements of latency-sensitive applications can be violated
because of excessive waiting time of long queue. Furthermore,
reliance of the remote cloud servers to fulfill the tasks may
not help in improving the situation due to high communication
delay or networking related disturbance.

These issues exposed from the above use cases do urge
the need to develop an adaptive offloading mechanism that is
based on the fog resource awareness to make the best context-
aware offloading decisions. The work in [6] proposed an
offloading policy for fog nodes to minimize the averaged delay
for providing the IoT services to the IoT nodes in the IoT-fog-
cloud application scenarios. The policy to offload the tasks in
the fog layer or forward them to the cloud is decided based on
an intensive analytical delay model, which takes into account
the IoT-to-cloud and fog-to-cloud communication delay. In
particular, the fog-to-fog communication is exploited to reduce
the service delay through an efficient task sharing mechanism,
which accounts for not only the queue length status of fog
nodes but also the types of IoT service requests (i.e., light and
heavy tasks). In conclusion, the service provisioning tasks are
dynamically assigned to be processed in the fog landscape or
in the cloud by an optimized manner. The various numerical
results associated in the proposed framework show the role of
fog layer in reducing the service delay as expected. Closely
related to the work [6] is FOGPLAN framework as introduced
in [7] for QoS-aware dynamic service provisioning. In this
scheme, to ensure the QoS requirement of delay-sensitive IoT
applications the fog service controllers continuously monitor
their task execution performance and the service request rate
to dynamically decide whether to deploy a new request into
or to release a queued request from the queues. This key
mechanism enables the fog node to remove the queued tasks,
which no longer violate the prescribed delay requirement.
As a result, the percentage of services satisfying the QoS
constraints is increased significantly while reducing the overall
cost. However, the resources of fogs are not made full use of in
these works since a majority of heavy tasks is likely processed
by the cloud servers.

In this paper, we examine the performance of fog layer to
process all the requesting tasks. In addition, we proposed a
MaxRU (Maximum Resource Allocation) algorithm to handle
the unbalanced load among the heterogeneous fog environment
as well as improving the service provisioning delay.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The work considers an IoT-Fog-Cloud system as illustrated
in Fig. 1, which basically comprises of three layers, namely
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IoT, Fog, and Cloud layer to provide IoT services.
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Fig. 1: A typical three-tier architecture of IoT-Fog-Cloud
system for providing specific kinds of IoT services.

For readability, important terminologies used in this paper
are defined and clarified as following definitions:

Definition 1: An 10T service A requested by IoT nodes is
modeled as a tuple A = (a, R,, f(a)), where a is input data
size needed to be processed, R, represents required resources
for processing a, and f(a) is the output data size of processing.

Definition 2: The service provisioning delay D 4 is defined
as the time interval elapsed from when a fog receives the
service request A (i.e., the input data a) until the requesting
IoT node receives the response (i.e., the output of input data
processing f(a).

In our IoT-Fog-Cloud system, the IoT nodes primarily
submit the service requests to their closest connected fogs.

Definition 3: A fog node is called primary host of a service
request A if it receives the service request A primarily.

Definition 4: A fog node is called host (or service host) of
a service request A if it eventually takes charge of processing
a, and then sending the computation result f(a) to the IoT
node.

B. Workflow Model of IoT Service Provisioning

Provisioning an IoT service to a requesting IoT device is
modeled as a workflow, which includes a set T4 of m tasks,
Ta = {t1,...,tm }. Basically, there are two types of tasks in
the set: data communication and data processing tasks. The
first type refers to tasks for sending and receiving the data
through communication channels, while the second type is
for executing the data by dedicated algorithms and software.
Fig. 2 illustrates such an overall workflow, in which each task
is sequentially executed, with output data as the input of its
subsequent task. To describe the parametric context of each
task, we define a; and f(a;) as the input and output data size of
the task t;, respectively. In addition, v, = f(a;)/a; represents
the input-output data ratio of task ¢;, which is dependent on
the types of tasks and the associated task execution methods
[8]. Notably, «¢, = 1 for the data communication tasks.
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Fig. 2: A general workflow for service provisioning processes
includes possibly three tasks, which are executed sequentially.

From the above stated perspective, each primary host is
based on the available resources and workload state of its
neighborhood to select the efficient service host. Each fog
maintains it own neighbor resource table containing the up-
dated information about the available resources. These tables
are updated and shared periodically among the neighboring
nodes to support the primary host to make offloading deci-
sions. Table I shows an example of neighbor resource table
stored by the fog node F}, which records the resource states
of neighbors with respect to residual memory (MM,.), clock
frequency, round-trip time (RTT), and waiting time in queue
W).

Fog specification & Resource Status

Node ID =15y T Frequency (GHz) | RTT (ms) | W (ms)
133 200 10 25 3502
T3 100 5 31 500
Ty 400 25 73 239.1

TABLE I: Resource table of neighbors of fog node F}

C. Problem Formulation

Fig. 3 illustrates the concern problem in IoT-Fog-Cloud
systems, in which the primary host F, cannot process the
input data of service request A due to lack of resources.
Meanwhile, offloading the task to the fog neighbors F; and Fj

W,

LTTFETTFETATTRTTTIIITTIIN o gt ermey

long queue waiting time Wy
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Servi A |I||H|H |H|I|HHI F,: Insufficient resource &
ervice reques short queue waiting time W,
Ws

[ITTTETTTETTRTITIEY ron auee waiimg e

long queue waiting time W3
W,

I'HHHHHH F4: Low computation & short
queue waiting time Wy

Fig. 3: The heterogeneity and unbalanced workload of fog
environment expose issues in offloading tasks.
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may lead to extensive delay since there are high workloads in
queues of these fog nodes. In addition, £ can offload the task
but resulting long delay due to low computational capability.
Such issue urges a need to design an algorithm for efficiently
allocating which fogs process which tasks in order to achieve
the minimized average delay.

III. MATHEMATICAL FORMULATION OF TASK EXECUTION
MINIMIZATION

Generally, the problem is turned into resource and commu-
nication scheduling, which simultaneously maps appropriate
fog resources to process corresponding tasks and then establish
an order to send the processing results to the IoT node. Based
on the workflow, we aims at finding a schedule to execute
the workflow on fog and cloud computing resources so that
the makespan of schedule (i.e., service provisioning delay)
is minimized. We define a schedule for each workflow of
provisioning the service A as a tuple S4 = (Ta,Ca, Ma,Da4),
which include a set T4 of tasks in the workflow, a set C»x
of fog resources, a task-to-resource mapping M4, and the
total execution time of schedule (i.e., total service provisioning
delay) D 4.

In each schedule, C4 = {F}, Fy, ..., F}, } includes the neigh-
bor fogs of primary host, which need to be assigned for exe-
cuting the tasks. M4 represents a task-resource mapping and
is comprised of tuples of the form m;’ = (t;,r;, STy, , ETy,),
one for each task in 74 of workflow. A mapping tuple m;’
implies that task ¢; is scheduled to be processed by resource
r; and is expected to start executing a time ST3, and complete
by time ET},, where ¢; € Ty, and r; € C4.

The objective of the optimization is to find an optimal
workflow that minimizes the service provisioning delay, that
is modeled as follow:

P: min Dy
(D

s. t.  Constraints.

1) Objective Function: The objective function is to mini-
mize the service provisioning delay D(A), which is calculated
as follow:

Dp= ST+ Y amT = Toy, )
jecy

where ST, is the start execution time of final task t,,
of workflow, and ;=1 if the task t,, is processed by the
resource 7 (r; € Cj), Tewr 1s current time captured by the
primary host as it receives the request A, and T, is time
to process the task t,,. Since ¢, is the final task of workflow,
T}’ is time to transfer the result f(a) from the host r; (i.e.,
a fog or cloud) to the requesting IoT node. We assume that
there are [ hops to connect the host r; to the IoT nodes, thus,
TP'7¢ is derived by:

Toc j’(a) TO;
Tt =% T ey, 3)
l

where f(a) is the output data size in bits, and R; is the data
rate of I’th link on the path to transmit f(a) from r; to the
IoT node, and 7;7""" is propagation time from a node m to a
node j, which can calculated from RTT (see Section VI).
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2) Constraints:
¢ To execute a task, a resource must have an available

sufficient resource to process the input data of task. Since
all requesting services may have different requirements
on kind of resource features (e.g., available storage,
CPU processing capability, and/or their combinations)
to process the input data, we use the operator >~ to
indicate the sufficiency of resource. Thus, the constraints
are modeled as follow:

Z ain?Uai = RV € Ty, @
JjECa
where R4% ig the current available state of resource T,
and R}’ is required resource to execute the task t;.
Each task is processed only by a single resource, thus
that implies the following constraint.

D aij =1, € Ta. 5)
JjECa
In respecting to the queued tasks, all start times of tasks
must be greater than the current waiting times of queues
of resources, which process the tasks:

STy = Tewr = Y aijW;, Yt € Ta. (6)
Jj€CaA
Regarding the order of tasks, as a task ¢; is finished
completely before a task ¢; is executed, their start times
must satisfy the following condition:

ﬁij(STi + Z aikjﬁjoc) < STj,V{ti,t]‘} € Ta. (7)
keCa

where f3;; is defined as:

1, if Oy > Oy,
ij = ’ 8
By {0, otherwise. ®)

Notably, the processing orders of tasks t; (i.e., O,)
are dependent on the their data dependence and can be
obtained based on the constructed workflow. Furthermore,
the processing time 77, °° for the communication tasks
can be adopted from Equation (3). Meanwhile, for the
data processing tasks the time required for a resource 7;
to process a-bit data of task tj is calculated as follow:

TL'I;:OC _ ak’)/ik’ (9)
fi

where f; is the computation capability of r;, i.e., the CPU
frequency (in CPU cycles per second), and ~;; is the
processing density of r; to process the data of task ¢x (in
CPU cycles per a data bit).
As a pair of tasks ¢;, t; involves sending and receiving a
set of data, they are executed in parallel by the transmitter
and the receiver, thus:

0:;(ST; — ST;j) = 0,V{t;,t;} € Ta, (10)

where o;; is defined and retrieved from the built workflow
as follow:
1, if Otj == Otm

i = 11
K {0, otherwise. 1D



o Multi-task single resource constraint: Unlike the general
resource provisioning scheduling algorithms for scien-
tific workflows on the cloud with multi-core servers as
assumed in [9], the resource allocation for offloading
mechanisms in the heterogeneous fog environment faces
additional concerns regarding constraints on concurrent
usage of resource and time. In this work, we suppose
that no multiple tasks are executed in parallel by a single
resource. In other hand, as a task ¢; and a task ¢; are
assigned to be executed by a resource ry, their start times
must respect to following condition:

(inST; — o ji BT ) (0, ST; — e, ET;) < 0, (12)
V{ti,tj} S TA & Tk € Ca.

A. Solution Deployment Analysis

In this work, we employed particle-swarm optimization
(PSO) approach to resolve the problem P [10]. The set of
solutions include an optimal one to offer the minimal service
delay and other feasible sub-optimal ones. Practically, the
optimal solution may not be deployed due to unavailability
of expected task-resource mapping, which in turn is basically
caused by unavailable resource of involved fogs, or unreliable
communication dropping the resource allocation requests. To
cope with this situation, we utilize an additional feasible solu-
tion (i.e., sub-optimal solution) in the set as a backup solution.
Suppose that a fog obtains a set Sq = {S%,S%,..., 54} of
feasible solutions for offloading a task A, which includes the
optimal solution S and a number p of sub-optimal solutions.
We denote D¥ (k = T...p) as the expected service delay as
the corresponding solution Sff1 is implemented. The feasible
solutions are selected such that their corresponding delay are
less different, or |D% — DY|/D% < ~u,%, where 4, is
acceptable threshold of difference between delays obtained by
any feasible solution and the optimal solution. To facilitate
the selection of solution, the feasible solutions in the list are
sorted in a descending order according to the expected delay.

IV. MAXIMAL RESOURCE UTILIZATION BASED
ALLOCATION IN FOG ENVIRONMENT

A fog node can receive multiple resource allocation requests
simultaneously for executing different tasks, some of which
may expose an overlap of expected resource usage. As illus-
trated in Fig. 4, five task execution requests t1, t2, t3, t4,
and t5 cannot be served altogether by a fog node F3 due
to their mutual conflicts of some requesting resources (e.g.,
resource overlap between t3 and ¢5). Accordingly, the request
to totally is rejected since the resource is already allocated for
processing t;. Meanwhile, the three remain tasks ¢3, ¢4, and
ts must compete for usage of resource.

Due to lack of global information, the fog nodes make
decisions on which task requests are accepted to process in
a distributed manner. In a simple way, the fog nodes can
employ the first-come first-serve (FCFS) mechanism to handle
the requests. However, it probably leads to degrade the overall
system performance in terms of delay in the cases that the
requests for implementing the optimal solutions are denied. In
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Fig. 4: Multiple requests for executing tasks expose possible
conflicts of resource usage in fogs.

addition, deploying the backup solutions or the cloud-based
solutions in the worst cases can attribute to an increased delay
averagely.

In MaxRU scheme, some of received requests are accepted
to be served by a certain fog so as the resource utilization of
the fog is maximized. We denote 17 as a feasible allocation
solution, which is a set of p; possible maximum requesting
tasks (0 < p; < p) such that their expected resources are non-
overlapping, 7} = {t{/,tgl,...,t'z’;;}. Notably, t'j’f/ is selected
from the set 7", Vj = 1...p;, and the tasks in T} is sorted in an
ascending order of start time (ST). As the allocation solution
T7 is deployed in a certain fog, its resource utilization RU;

is defined and calculated by:

_ SV(BT; - STy)
-~ ET,, — STy

where ST; and ETj; are start time and end time of execution
of task t'JT/, which are obtained from the optimization problem
solutions.

Suppose that there exists a maximum p allocation solu-
tions (i.e., 17, ..., Tg), thus the maximum resource utilization
can be derived by MaxRU = max{RUy},Vk € {1,p}.
Consequently, in MaxRU mechanism the allocation solution
which offers the maximal resource utilization is selected to be
deployed.

Algorithm 1 summarizes key procedures to implement
MaxRU mechanism.

RU; 13)

V. SIMULATION AND PERFORMANCE EVALUATION
A. Simulation Environment Setup

1) Characteristics of IoT Services: In this work, the input
data of all the computing service requests is characterized
by sizes, which are uniformly distributed as U[1-5] MB. We
vary the service request rate of IoT nodes according to the
list © = {0.01,0.02,0.03,0.04,0.05} (requests per second)
to investigate the performance of systems in the cases of
increasing workload. The input-output ratio of data execution
tasks is set to be 0.1 for all the types of data.

2) System Configuration: The fog layer is composed of 10
heterogeneous fog nodes, which are characterized different
configurations. The heterogeneity of fog nodes are featured
by computation capability (i.e., CPU processing density)
and CPU frequency f, which are assumed to be uniformly
distributed in U[200, 2000] (cycles/bit) and U[1, 15GHz]
(U[10°, 15x10°](cycles/s)), respectively [11]. The RAM and
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Algorithm 1: MaxRU: Maximal Resource Utilization
based Allocation

o T — rogr T a __ a a
Input: 77 = {t7,t5, ..., t0}, T% = {t§,....,t2}
// Sets of p requesting tasks and g allocated tasks
Output: Res = {t].res,th.res, ..., t,.res} // response

to requests, tj.res=1: accepted; tj.res =0:

rejected
1 begin
// Rejecting tasks which violate the allocated
tasks
2 for t{ € T" do
3 if RC_OVERLAP(t7,T*) = 0 then
4 ti.res <0 // Rejecting t}
5 L REMOVE(tf,TT) // Update T"
// Accepting tasks that their requesting resources
do not overlap with that of the other tasks
6 for t; € T" do
7 it RC_LOVERLAP(t7, T"\{t}) =1 then
8 t;-".res —1 // Accepting t]
9 L REMOVE(IL:,TT) // Update T"
// Find p feasible allocation solutions
0 | T =A{T7,...,T;} = ALLOC_SOL(T")
// Sort tasks in an ascending order of ST
11 for T] € T5o do
12 T < SORTsr(T}); // t7.8T < t7,,.5T
Vil € T]
13 Calculate RU; as Equation 13
14 if RU, = MaxRU then
15 T is selected to be deployed
16 for 7 € T} do
17 L tires <1

storage capacity are two another factors characterizing the het-
erogeneity of fog environment, which are randomly distributed
in {1GB, 512 MB, 256 MB} and U[1 GB,6 GB], respectively
[4].

3) Communication Delay and Channel Capacity: The
propagation delay can be estimated by having the round-trip
time (RTT), which itself can be expressed as RTT(ms)=0.03 x
distance (km)+5 [6], [12]. Thus, this work assumes that the
propagation delay between the IoT nodes and the fog nodes,
among fog nodes, and between fog nodes and the cloud servers
are uniformly distributed between U[1, 2] (ms), U[0.5, 1.2]
(ms), and U[15, 35] (ms) [6], respectively. Furthermore, the
data rate between the IoT layer and fog layer is 54 Mb/s
according to IEEE 802.11 a/g (i.e., WiFi standard) [4].

B. Comparative Approaches

To evaluate the performance of TPRA algorithm in terms
of average service provisioning delay, we use AFP and TPRA
algorithms [13] for the comparative study. In AFP mode the
tasks always are processed by the best neighbors or cloud
if the request time overcomes the fog offloading limit (e /).
Meanwhile, TPRA [13] is based on the task priority with

expected delay consideration. We examine the performance
of algorithms as the service request p and A are varied.

C. Evaluation and Analysis

This section presents and analyzes the performance of sys-
tems with respect to the service provisioning delay as different
offloading strategies are employed in different simulation
scenarios.

Fig. 5 depicts the average service delay achieved by four
comparative algorithms TPRA, MaxRU, and AFP as the
service request rate p and heterogeneity level (M) of fog
environment are varied.
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Fig. 5: The average service delay offered by the comparative
schemes as a function of A and u

As expected, the cloud-assisted solution AFP totally incurs
the longest delay, which is resulted in from the dominance of
delays of communication tasks since the data is transmitted
over long distances from the fog layer to the remote cloud
server. In parallel, the other fog-based offloading solutions
(i.e., TPRA, MaxRU) achieve a lower delay regardless the
variations of p and A. Such the result completely confirms the
essential role of fog computing platforms in improving the
system performance in terms of service delay as recognized
in the existing literature. In particular, since the rate of service
requests directly impacts on the queuing status of fog nodes,
the performance gain obtained by the fog-supported computing
systems is get larger in cases of lower p.

In addition, as g is higher more workloads are computed
by the cloud in the AFP scheme since the neighbor fog nodes
probably have long queues of waiting tasks. Furthermore, the
scarcity of powerful computing fogs leads to a significant
increase in the amount of tasks forwarded to the cloud server
in the AFP policy. Therefore, as displayed in Figs. 5 the
performance gap between TPRA, MaxRU and AFP is higher
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when p increases. Whereas, the proposed offloading mecha-
nism TPRA enables more services hosted and processed by
the fog landscape through associated efficient load balancing
among the fogs. As a result, the average service delay offered
by our proposed solutions is lower than that of AFP regardless
of p.

Fig. 6 supports such the claim through the percentage of
workload (PF)), which is processed by the fog layer. As shown
in this figure, as the rate of request is low the task division
mechanism is not significantly beneficial. However, MaxRU
based offloading solutions enable the fogs to serve up to 75%
of IoT service requests at the highest request rate (u = 0.05),
which implies approximately only 25% of requests needed
to be processed by the cloud. Meanwhile, the comparative
scheme (AFP) can handle a smaller percentage of requests
(roughly 55%) in the fog layer and thus up to 45% requests
are forwarded to the cloud.
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g ® 80 |
wE
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% 40 40 ‘
=20 20
£ |
- 0 0
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Fig. 6: Percentage of workload processed in the fog landscape
as a function of A and pu.

VI. CONCLUSIONS

Offloading the tasks to the best neighbor fogs may con-
tribute to the excessive delay due to the long queuing tasks
of powerful nodes. In addition, the workload distribution is
unbalanced among the heterogeneous fog environment, which
results in the underutilized resources. This paper introduced
TPRA, a resource allocation algorithms for assigning the
computing tasks efficiently to the fog resource. Each IoT
service provisioning is modeled as a workflow, which specifies
the schedule of processing involved task. In addition, TPRA
handles the conflict of requesting resource based on the prior-
ity of tasks, that is achieved by the workflow optimization. The
primary simulation results show the advantage of proposed
algorithms in reducing delay and balancing the workload in
the heterogeneous fog environment.
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