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Abstract—Millimeter waves (mmWaves) of the 28 GHz 
frequency bands have been selected for the 5G 
communications with special usage scenarios such as smart 
factories. Indoor path loss prediction plays an important role 
in configuring a base station to be able to utilize the full 
capacity of the new technology. Although machine learning has 
attracted much attention recently in path loss modeling thanks 
to its ability to make accurate predictions, its performance can 
be limited by the size of available measurement data set used 
for training. In this paper, we propose a new training strategy 
to train path loss models based on convolutional neural 
network (CNN). The proposed strategy is based on meta-
learning which performs well in few-shot learning scenarios 
with multiple tasks comprising a meta-task. It is shown that the 
indoor path loss model based on a CNN configured as a meta-
task of multiple beams can outperform the CNN models by a 
conventional training algorithm as well as empirical models. 

Keywords—millimeter wave, smart factory, path loss 
modeling, meta-learning, deep learning, 5G 

I. INTRODUCTION  
Millimeter waves (mmWaves) in 28 GHz frequency 

bands have been selected for the fifth-generation (5G) 
communications in South Korea, US, and Japan [1] with 
special usage scenarios such as smart manufacturing, C-ITS 
for autonomous driving, and sports game broadcasting within 
stadiums. Path loss modeling has received a great deal of 
attention as one of the important elements for the optimal 
planning and configuration of base stations due to precarious 
channel characteristics of millimeter waves. 

There are three types of path loss models: empirical 
model, deterministic model, and machine learning-based 
model. Empirical models such as close-in (CI) free space 
reference distance model, floating-intercept (FI) model, and 
alpha–beta–gamma (ABG) model are some of the examples 
used for indoor prediction [2-4]. These models define the 
amount of path loss as a function of the strength and 
environment parameters using multiple equations with a few 
parameters including the distance between transmitter (Tx) 
and receiver (Rx), the frequency of Tx, and so on. Since they 
do not take building interior layouts into account, they 
cannot model the path loss closely enough in practice. 

Deterministic methods, such as ray tracing, have been 
proposed that can achieve good performance in some 
scenarios [5]. However, ray tracing requires detailed building 
layout information and dielectric properties of materials [6-7]. 

Machine learning has gained popularity as an alternative 
approach to build path loss models thanks to its ability to 
make accurate predictions based on training data even when 
detailed information about a particular propagation 
environment is not available. It allows learning of the 

underlying functions between input and output variables 
based on training data set [8]. 

Machine learning approaches can be used to build 
accurate path loss models for both indoor and outdoor 
scenarios. It has been reported that in many scenarios the 
prediction accuracy and computational efficiency of machine 
learning models are higher than those of empirical models 
and deterministic models, respectively [9-17]. One of the 
fundamental limitations of machine learning models is that 
they require a sufficient amount of training data which are 
often not available in practice. A smart factory is a good 
example where the interior space is crowded with 
manufacturing devices and machines. With the 
manufacturing machines operating often 24/7, collecting 
measurement data for training is usually difficult if not 
impossible. Furthermore, there may exist only a few places 
to set up the base station within the smart factory for 
measurements. These unfriendly measurement conditions 
lead to the insufficient number of training data for machine 
learning models. 

Meta-learning builds a machine learning model from the 
models of previous tasks and quickly adjusts the model with 
few samples from a new task. The main goal of meta-
learning is to learn to learn and has been proposed as a 
framework to address the challenges of few-shot learning. 
Reptile is one of the most popular meta-learning algorithms 
derived from Model-Agnostic Meta-Learning (MAML) and 
it can provide good parameter initialization in the model 
given various learning tasks [18-19]. 

One important feature of meta-learning is that it is a task-
based method, i.e., the training process is based on tasks. 
This lends itself well to indoor path loss modeling for 
mmWave communications which are based on multiple 
beams transmitted simultaneously. To our best knowledge, 
there exist no previous works in mmWave path loss 
modeling based on meta-learning. 

The contributions of our work can be summarized as 
follows: 

1) We present a new indoor path loss modeling method 
for mmWaves based on meta-learning. 

2) We compare our proposed model with FI model and 
CNN model and highlight the strengths of our proposed 
model. 

The paper is organized as follows: Section II presents 
some path loss models. Section III describes our proposed 
path loss model. The experiments and results are included in 
section IV. The conclusion and future work are discussed in 
section V. 
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II. RELATED WORK 

A. Empirical Path Loss Models 
Empirical path loss models rely on the measurement data 

obtained from a specific propagation environment in order to 
determine the statistical relationships between path loss 
related parameters (T-R separation, working frequency, etc.). 
CI model and FI model are two examples of empirical 
models frequently used in indoor path loss prediction 
[2][4][20]. Several path loss related parameters including 
frequency (𝑓𝑓) and distance (𝑑𝑑), are considered in CI model 
which uses measurement data to estimate the path loss 
exponent (𝑛𝑛) and standard deviation (𝜎𝜎) as given by: 

PL��(𝑓𝑓, 𝑑𝑑)[dB] =  FSPL(𝑓𝑓, 𝑑𝑑�) + 10𝑛𝑛 log(𝑑𝑑) + 𝜒𝜒�
��, (1) 

where FSPL(𝑓𝑓, 𝑑𝑑�) is the free-space path loss at the close-in 
reference distance. The FI model is given as: 

PL��(𝑑𝑑)[dB] =  𝛼𝛼 + 10𝛽𝛽 log(𝑑𝑑) + 𝜒𝜒�
��, (2) 

where 𝑑𝑑 is the distance between Tx and Rx, 𝛼𝛼 is the path loss 
offset which is determined by measurement data, and 𝛽𝛽  is 
path loss exponent like 𝑛𝑛 in CI model. These two models 
include 𝜒𝜒 , a zero-mean Gaussian random variable with 
standard deviation 𝜎𝜎, as the shadow fading term. FI model is 
recommended by 3GPP [21] and WINNER II [22]. 

Despite their simplicity and computational efficiency, the 
performance of these models in terms of prediction accuracy 
is limited since they do not take detailed indoor propagation 
effects such as wall penetration, reflection, scattering, 
diffraction, and NLOS loss factor of walls into account. 

B. Deterministic Path Loss Models 
Ray tracing is one of the most popular deterministic 

models which can simulate signal propagation and provide 
realistic light and shadow effects. This method applies radio 
wave propagation mechanisms and numerical analysis 
techniques [8]. It shows the simulated rays emitted from Tx 
to Rx and obtains the data like received power, path gain, 
path loss, etc. Before starting the simulation, user needs to 
set up the propagation environment, place the Tx and Rx, 
and enter some parameter values in the ray tracing software. 
Its predictions instead of relying on measurement data 
depend on the reflection, diffraction, etc. of signal 
propagation process. The prediction accuracies of the ray 
tracing model depend on some values, such as the number of 
reflections, the precision of reflections loss parameter. The 
more rays generated, the finer the details of the rendering, 
but obviously the greater the amount of calculation. With the 
continuous reflection of rays, you can imagine the huge 
amount of calculation [23]. 

In comparison with empirical models, ray tracing 
includes more factors and simulates all paths of rays, from 
which the composition of the path loss of each Rx can be 
derived. However, ray tracing lacks computational efficiency, 
and time-consuming calculation process must start from the 
beginning again once a new Rx is added. 

C. Machine learning-Based Path Loss Models 
Machine learning path loss models are different from 

aforementioned methods. The important part for most 
machine learning-based path loss models is training. The 
quality of training directly determines the accuracy of the 
predictions. Supervised machine learning algorithms like 
random forest, artificial neural network and convolutional 
neural network are capable of performing regression after 
training the model. Machine learning-based models are also 
with high computation in the training stage. Whereas once 
the model is trained, we can load the trained model multiple 
times and use it directly without retraining. 

Exploring the application of machine learning algorithms 
in modeling path loss has been generalized in urban and 
suburban environments, but none of the existing works is at 
28 GHz in a smart factory. 

III. PATH LOSS MODELING BASED ON META-LEARNING  

A. CNN Models with Meta-Learning 
 Meta-learning has the ability to learn fast a new task 

with a small amount of data based on existing knowledge. 
One important feature of meta-learning is that it is a task-
based method, i.e., the training process is based on tasks.  

Reptile is a meta-learning method that finds a common 
initialization across meta-training tasks and uses it to quickly 
adapt to new tasks [24]. Reptile is the application of the 
shortest descent algorithm in meta-learning [25]. It has lower 
computational compared with MAML which includes 
second-order derivation. It can learn an initialization for the 
parameters of a neural network model so that it is fast to 
optimize these parameters at test time, that is, the model 
generalizes from a small number of samples from the test 
task. Compared with other meta-learning methods, Reptile is 
easy to apply that does not need a training-test split for each 
task. The Reptile algorithm is as follows: 

Algorithm 1 Reptile Training Procedure 
Initialize 𝜙𝜙 
for iteration =1,2, …, do 
        Tasks 𝜏𝜏�,  𝜏𝜏�, … ,  𝜏𝜏�  
        for 𝑖𝑖 =  1,2, … , 𝑛𝑛 do 
                 for 𝑗𝑗 = 1,2, … , 𝑘𝑘 do 
                          Compute parameters: 𝑃𝑃 = Optimizer(𝐿𝐿��, 𝜎𝜎) 
                 end for 
                 Save 𝑊𝑊� =  𝑃𝑃 
        end for 
        Update parameters: 𝜙𝜙 ← 𝜙𝜙 + �

�
∑ (𝑊𝑊� − 𝜙𝜙)�

���  
end for 
Fine-tune 𝜙𝜙 on the test task 

where 𝜙𝜙 denotes a vector of parameters of the model, 𝐿𝐿�  is 
loss, 𝑘𝑘  is the step size of optimizer, and 𝜎𝜎  and 𝜖𝜖  are the 
learning rate. 

Fig. 1 shows the different ways to update the parameter 
vector. Fast weight update method is the regular way to 
update the vector. Slow weight update method (Reptile way) 
can fast adjust model to fit different tasks. After training 
process, a small number of samples from test data will be 
randomly selected to fine-tune. Fine-tuning is an important 
step to adjust model parameters based on new task samples. 
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Fig. 1. The method to update model parameter vector. The 𝜙𝜙��� is 
calculated by slow (Reptile) weight update method and 𝜙𝜙� is updated through 
the fast weight update method. 

In this paper, path loss modeling of mmWave 
communications based on multiple beams is regarded as a 
meta-learning problem with multiple meta-training tasks. We 
used Reptile algorithm [26] as the main training algorithm 
for CNN. Convolutional neural networks, which are 
specifically designed to deal with the variability of 2D 
shapes, are shown to outperform other techniques [27]. CNN 
can be trained to extract features automatically to make 
predictions based on previously unseen input data. 

Our CNN model includes three convolutional layers and 
a single fully-connected (FC) layer. Each convolution is 
followed by batch normalization and ReLU activation 
function. Leaky ReLU is used as the activation function in 
both convolution and FC layers. The filter size and stride size 
of each convolutional layer are (5, 5) and 2, respectively. The 
number of neurons in the FC layers is 1281 and 1. The input 
data of the CNN is the local area multi-scanning (LAMS) 
image described below. T-R separation is also used as an 
input to the FC layer. The output is the predicted path loss 
value. Fig. 2 provides an illustration of the CNN architecture 
used in our work. 

B. Image Generalization 
 Local area multi-scanning (LAMS) includes the region 

of interest between Tx and Rx shown in Fig. 3. Given the Tx 
point and an Rx point with coordinate, we can locate these 
two points in the floor plan. Next, we make a line segment 
𝑙𝑙��  which connects Tx and Rx, and find the line segment 
𝑙𝑙� and 𝑙𝑙�  which pass Tx and Rx respectively and are 
perpendicular and bisect by 𝑙𝑙��. The lengths of 𝑙𝑙� and 𝑙𝑙� are 
decided in advance. Then, it is clear where we are interested. 
In this area, we select the specified number of pixels at equal 
intervals and save them. Finally, we need to resize the image 
into a square of the fixed size [28]. 

IV. EXPERIMENTS AND RESULTS  

A. Path Loss Environment 
The path loss environment we use in our experiment is a 

smart factory of size 86.8 m x 28.7 m x 4 m as shown in Fig. 
4. A base station operating as the Tx (shown by a green 
square surrounded in black) was set up at (12.9, 8.1) and 
RSS measurements were taken at 537 locations in total. The 
circles in Fig. 4 represent Rx locations with the filled colors 
indicating path loss values. The parameters related to the Tx 
and Rxs are listed in Table I. The Tx transmits 16 beams 
simultaneously in slightly different directions and the Rx 
stores the maximum of the 16 receiver signal strength (RSS) 
values and the beam ID at each measurement location. The 
resulting number of data collected in this way for each beam 
is listed in Table II. Since we had a small training dataset 
with multiple disjoint subsets, we adopted meta-learning to 
train the CNN. Specifically, the measurement data of beam 1 
to beam 8 were used for meta-training tasks and beam 9 to 
beam 16 were used for meta-test. These two groups of data 
were mostly collected in the bottom half and the top half of 
the factory floor, respectively. 

TABLE I.  TX AND RX INFORMATION 

Parameter Value 

Frequency (GHz) 28 

Transmission Power (dBm) 32.5 

Tx Height (m) 2.45 

Rx Height (m) 1.5 

TABLE II.  THE NUMBER OF DATA FOR EACH BEAM 

Beam ID No. of data Beam ID No. of data 

1 24 9 82 

2 25 10 33 

3 49 11 8 

4 43 12 12 

5 57 13 10 

6 63 14 14 

7 62 15 6 

8 31 16 18 

Total  354 Total 183 

 
Fig. 2. The structure of CNN. 
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Fig. 4. Experiment environment: a smart factory. 

B. Comparison Models 
In order to compare the performance of the proposed 

method, i.e., the CNN trained by meta-learning in terms of 
prediction accuracy against that of conventional methods, a 
vanilla CNN model and FI model were selected. Most 
previous works path loss modeling based on machine 
learning use vanilla CNNs with different types of input 
image [29-30]. The hyperparameters were specified with the 
same values as those used for the CNNs for meta-training. 
The path loss values of FI model were calculated by using 
equation (2) with the model parameter values specified as 
shown Table III. 

TABLE III.  PARAMETERS OF FI MODEL 

Models FI model 

Parameters 

α 87.15 

β 1.67 

 2.47 

 

C. Results 
The performance of each model was evaluated in terms 

of Root Mean Square Error (RMSE). RMSE is defined by: 

RMSE =  �∑ (������)�

�
�
��� , (3) 

where 𝑛𝑛  is the number of data points, 𝑦𝑦�  is the 𝑖𝑖 -th 
measurement, and 𝑦𝑦�� is its corresponding prediction. 

Table IV shows the RMSE of each model for each beam. 
It can be clearly noticed the proposed model outperforms FI 
model and CNN model. The proposed model has RMSE 
values less than 2 dB for all beams. CNN model performs 
better than FI model but worse than the proposed model. The 
average RMSEs of FI model, CNN model and CNN model 

 
Fig. 5. The average, maximum and minimum values of the measurement data in the range are compared with the three models. 
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Fig. 3. Illustration of local area multi-scanning image generation. 
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with meta-learning are 3.59 dB, 2.38 dB and 1.08 dB, 
respectively. The maximum and minimum RMSE of 6.42 dB 
and 0.41 dB were obtained by the FI model and the proposed 
model, respectively. 

Fig. 5 shows the average, maximum, minimum 
prediction of three models compared with the measurement 
data against T-R separation of 10 m ranges in the increasing 
order. We use visualization of this style since the 
measurement data are not only distributed unevenly in the 
values of T-R separation, but the path loss value also varies 
largely within the same range. This is mainly due to the 
existence of multiple measurements at a similar distance but 
in different locations. It can be observed the difference 
between the range of predicted values and that of the 
measurement data is smaller for the proposed model than the 
vanilla CNN model and FI model whereas the difference 
between the average predicted values and the average 
measurements is very small. This implies that the prediction 
accuracy of the proposed model is higher than that of the 
other models not just on average but in individual 
measurements as well. 

The absolute errors of each model are provided in Fig. 6. 
where it is shown the absolute errors of the proposed model 
are lower than 5 dB which are close to blue color in Fig. 6 (c). 
It can be easily noticed both meta-learned CNN and vanilla 
CNN models outperform the FI model as expected thanks to 
their ability to learn to extract features of path loss 
environments such that the underlying path loss function can 
be approximated based on the training data. Path loss 
prediction results of the three models are summarized in Fig. 
7. 

TABLE IV.  COMPARISON OF PATH LOSS PREDICTION USING FI 
MODEL, CNN MODEL, AND PROPOSED MODEL 

Beam ID 
RMSE (dB) 

FI Model CNN Model Proposed Model 

9 6.42 3.22 1.60 

10 3.60 3.05 1.40 

11 3.36 2.16 1.16 

12 3.60 3.25 1.01 

13 3.61 1.33 0.50 

14 2.78 2.41 0.96 

15 1.82 1.42 1.63 

16 3.58 2.26 0.41 

Average 3.59 2.38 1.08 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Path loss absolute error comparison of three models: (a) absolute 
errors in prediction value of FI model, (b) absolute errors in prediction 
value of CNN model, (c) absolute errors in prediction value of the proposed 
model. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Path loss prediction results of the three models: (a) FI model 
predictions, (b) CNN model predictions, (c) proposed model predictions. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we develop a new path loss prediction 

model called CNN model with meta-learning and compare it 
with FI model and CNN model. Our proposed model realizes 
path loss prediction in a smart factory and figures out the 
few-shot data problem. 

The presented work is only applied at 28 GHz and in 
smart factory. We can apply our model to other different 
scenarios and try to combine meta-learning with other 
machine learning methods. In the future, we also can 
consider different frequencies or different environments as 
different tasks. 
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