
FFT and Machine Learning Application on Major 
Chord Recognition  

 
Nolan Monnier, Darien Ghali, and Sophie X. Liu 

Engineering School, Oral Roberts University, Tulsa OK 74171 USA 
 
 
 

Abstract — The purpose of this project was to use theory of Fast 
Fourier Transforms and a machine learning algorithm called 
Treebagger in order to process and recognize musical chords. Four 
musical chords were selected: C, D, G, and A. To be successful, the 
program should recognize chords in various octaves and musical 
inversions. Our goal is to use digital signal processing techniques such 
as sampling and frequency decomposition to preprocess audio files for 
input and train into the machine learning algorithms. For our 
application, we used MATLAB’s machine learning tool Treebagger. 
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I. THEORY 
     Digital frequency analysis relies heavily on the Fast Fourier 
Transform (FFT). It is a specific form of the traditional Digital 
Fourier Transform (DFT), used to increase computational 
speed. It simplifies the signals overall DFT into a series 
multiplications and two point DFTs. It can be represent in the 
following butterfly signal graph. 
 

 
Fig. 1.  A N = 8 FFT Signal Graph. 

It 's important to note that, for situations its applicable, the result 
of the FFT is equal to the result of the DFT. Thus it follows the 
same rule for frequency resolution shown in equation 1. 
   

Fs/N (1) 
 
Where Fs is sample frequency, N is number of data points used 
in the FFT. So if the goal of this project is to identify chords 
from a signals frequency, then some musical theory must 
covered to understand why the application is so difficult. A 
chord consists of three or more musical notes, played 
simultaneous. Because a chord is only defined by the notes that 
comprise it, are a near limitless array of keys and qualities that 
can make up a chord. The level of complexity is so vast, that it 
is nearly impossible for even most musicians to guess both a 
keys key (i.e C) and quality (Major) consistently. This 
complexity is further compounded by octaves and inversions. 
A chord can exist in any octave, or even between octaves. This 
means that no chord can be represent by a unique set of 
frequencies. Furthermore, the orientation of the three or more 
notes does not change a notes quality or key. The complexity is 
so great in fact, that simply frequency recognition software is 
insufficient to identify chords.  

 
Fig. 2. C Major Chord with inversions 

 
So in order to tackle the complexity of Chord recognition from 
audio samples, we will be using the Machine Learning 
techniques. Specifically, we used classification trees with 
Bootstrapping Aggregation, also known as bagging. 
Classification trees are decision trees that a computer can use to 
learn datasets. At the end of each branch of the tree, either a 
prediction or new decision is made. Normally however, a large 
classification tree has terrible predictive power due to 
overfitting. To solve this, bagging takes multiple smaller 
decision trees and takes the aggregate result. 
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Fig. 3  A Sample MATLAB Classification Tree 

 These aggregate trees comprise a model, which can be 
used to predict new data. To test the predictive power of a new 
model, we cross validate. Cross validation means giving a 
model data it has not seen before, letting it predict the answer, 
and the comparing it with the correct result. In classification 
applications, this is typically done through dividing the number 
correct by the number predicted. 
 

 

2.  METHODOLOGY 
 
     The plan for our program was simple. First, we’d obtain a 
set of chord samples. Then, MATLAB would read in these files 
and store them. MATLAB would process this data for key 
frequency information, and use this frequency as data in a 
machine learning algorithm. 
A digital music interface called MIDI was used to render the 
musical chords in Garage Band’s recording studio. We recorded 
36 audio files, containing the chord C, D, G, and A. We limited 
our recording to the middle three octaves, and the first three 
inversions (0,1,2).  iTunes was then used to convert the files to 
wav, an uncompressed format acceptable to MATLAB. Next 
we determined a table of relevant musical note frequencies to 
encompass all possible musical notes played in our set of 
samples. The useful range of note spans from G2 to C5 (98 Hz 
to 523.3 Hz), so our table included every note in between. This 
table would prove useful for preprocessing our signal data in 
MATLAB. 
 
     Our MATLAB program takes the samples and stores them 
internally for quick reference. It will also store input 
information like the length of each sample N, the chord of each 
sample (i.e. C,D,G,A), and the sampling frequency Fs. The each 
recording sample is stored in a row of a matrix, corresponding 
with a chord identifier stored in a matrix. MATLAB then 
quickly extracts frequency data from each row using the FFT, 
and subsequently stores them in a new dataset. The amount of 
data retrieved by the FFT is excessive (Fig. 4), so we used our 
table of useful frequencies to preprocess the data (Table 1). The 
table is hardcoded into our process function, so MATLAB can 

index and extract the desired frequencies from our FFT results. 
This feature selection was done through dividing the frequency  
 
table by the frequency resolution (Equation 1) and then 
indexing the FFT data. This achieves as set condensed and 
useful data samples seen in Figure E. The output data is 
formatted such that each row is a data sample, and each column 
is a note’s magnitude. 
 

 
 
Fig.4. Output of FFT 
 

 
 
Fig. 5. Output of Process Function 
 
In order to prepare the data for machine learning, we separated 
the whole set into train and test sets. In keeping with standard 
practices, 75% of the audio files were chosen as a training set. 
The frequency matrix as well as the corresponding chord vector 
are both separated in this manner. The train set matrix and 
vector are sent as arguments to the Treebagger function. The 
Treebagger function returns an machine learning model. The 
test set of the audio files are used for Cross Validation. We test 
to see how good our model’s output is by giving it unfamiliar 
chord. So, we pass the model and our test set of the frequency 
matrix to Treebagger predict function. Finally, these predicted 
chords are compared with the test set of chords in a simple loop 
to count how many of the predictions were correct.  
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3. TESTING PROCEDURES 

     To review, the MATLAB code is divided into various 
sections. It includes inputting the chords, processing the chords, 
separating the chords into training and test sets, using the 
Treebagger to model the data, and cross-validating.  
 
     We initially loaded files one at a time. On each input, we’d 
print out the sampling rate to ensure the frequency was 
consistent. Eventually, we needed to load all the audio files at 
once. To facilitate this, we stored the .wav files and their chord 
names into respective columns in an excel file. The excel file 
was then used to identify to MATLAB and load each the entire 
set. 
 
     Though the focus of our project was on preprocessing, we 
also still had to optimize the performance of Treebagger in 
order to prove concept. For bagged classification forest, the 
number of trees often significantly impacts the performance of 
the learning model. So, part of the testing to improve predictive 
accuracy involved plotting an Error-vs-Tree Number Graph to 
help improve predictive accuracy: 
 

 
 
Fig.6. Out of Bag Error Predictions 

 

 
4. EXPERIMENT RESULTS AND GRAPHS 
 

We initially had low predictive accuracy in recognizing the 
musical chords. Percentages were typically around 20-30%. In 
other words, our algorithm was simply guessing. At one point, 
attempts to tune our Treebagger algorithm included additional 
parameters trying parameters such as ‘MinLeafSize’. 
Eventually, we determined that the best performance occurred 
for a forest size 30-40 trees, and determined that no other 
parameters provided a sizeable improvement. Additional 
improvements were made concerning our musical note 
frequencies used for indexing and grabbing useful information 
from our samples. Originally we used math to determine the 
frequencies to process, going from 98 to 523.3Hz in steps of 

4Hz (G2 to C5). As this proved problematic, we exchanged this 
for an exact hard coded vector of the musical note frequencies. 
In addition, we noticed an error in our attempt to take the 
magnitude of the FFT samples. Initially, the MATLAB code 
used the function real() for this task, but it became clear that the 
correct function was abs(). After these changes, the prediction 
results for the musical chord recognition increased to 67-89%, 
depending on computer seed. 

 

5. CONCLUSIONS 

Overall, our musical chord recognition using machine learning 
proved successful, as the goal was to score predictive accuracy 
of 75% or greater, as well as show that this type of chord 
identification could be done with the proper preprocessing. To 
this end, we were extremely successful. Increasing the number 
of recorded samples, further effort to fine tune the Treebagger 
algorithm, or further efforts to finetune feature selection.. In 
addition, bagged classification trees are not most reliable 
machine learning tool when compared with neural networks or 
Randomforest algorithms. Perhaps python could be used to 
utilize these machine learning tools. Finally, our task could be 
broadened to include more chords or even include identification 
of the musical instrument. 
 
TABLE 1.  TABLE OF RELEVANT NOTES AND THEIR FREQUENCIES.  
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