
FFT and Machine Learning Application on Major
Chord Recognition

Nolan Monnier, Darien Ghali, and Sophie X. Liu

Engineering School, Oral Roberts University, Tulsa OK 74171 USA

Abstract — The purpose of this project was to use theory of Fast
Fourier Transforms and a machine learning algorithm called
Treebagger in order to process and recognize musical chords. Four
musical chords were selected: C, D, G, and A. To be successful, the
program should recognize chords in various octaves and musical
inversions. Our goal is to use digital signal processing techniques such
as sampling and frequency decomposition to preprocess audio files for
input and train into the machine learning algorithms. For our
application, we used MATLAB’s machine learning tool Treebagger.

Keywords—FFT; machine learning; musical chord recognition;
Treebagger (key words)

I. THEORY
 Digital frequency analysis relies heavily on the Fast Fourier
Transform (FFT). It is a specific form of the traditional Digital
Fourier Transform (DFT), used to increase computational
speed. It simplifies the signals overall DFT into a series
multiplications and two point DFTs. It can be represent in the
following butterfly signal graph.

Fig. 1. A N = 8 FFT Signal Graph.

It 's important to note that, for situations its applicable, the result
of the FFT is equal to the result of the DFT. Thus it follows the
same rule for frequency resolution shown in equation 1.

Fs/N (1)

Where Fs is sample frequency, N is number of data points used
in the FFT. So if the goal of this project is to identify chords
from a signals frequency, then some musical theory must
covered to understand why the application is so difficult. A
chord consists of three or more musical notes, played
simultaneous. Because a chord is only defined by the notes that
comprise it, are a near limitless array of keys and qualities that
can make up a chord. The level of complexity is so vast, that it
is nearly impossible for even most musicians to guess both a
keys key (i.e C) and quality (Major) consistently. This
complexity is further compounded by octaves and inversions.
A chord can exist in any octave, or even between octaves. This
means that no chord can be represent by a unique set of
frequencies. Furthermore, the orientation of the three or more
notes does not change a notes quality or key. The complexity is
so great in fact, that simply frequency recognition software is
insufficient to identify chords.

Fig. 2. C Major Chord with inversions

So in order to tackle the complexity of Chord recognition from
audio samples, we will be using the Machine Learning
techniques. Specifically, we used classification trees with
Bootstrapping Aggregation, also known as bagging.
Classification trees are decision trees that a computer can use to
learn datasets. At the end of each branch of the tree, either a
prediction or new decision is made. Normally however, a large
classification tree has terrible predictive power due to
overfitting. To solve this, bagging takes multiple smaller
decision trees and takes the aggregate result.

426978-1-7281-6476-2/21/$31.00 ©2021 IEEE ICUFN 2021

Fig. 3 A Sample MATLAB Classification Tree

 These aggregate trees comprise a model, which can be
used to predict new data. To test the predictive power of a new
model, we cross validate. Cross validation means giving a
model data it has not seen before, letting it predict the answer,
and the comparing it with the correct result. In classification
applications, this is typically done through dividing the number
correct by the number predicted.

2. METHODOLOGY

 The plan for our program was simple. First, we’d obtain a
set of chord samples. Then, MATLAB would read in these files
and store them. MATLAB would process this data for key
frequency information, and use this frequency as data in a
machine learning algorithm.
A digital music interface called MIDI was used to render the
musical chords in Garage Band’s recording studio. We recorded
36 audio files, containing the chord C, D, G, and A. We limited
our recording to the middle three octaves, and the first three
inversions (0,1,2). iTunes was then used to convert the files to
wav, an uncompressed format acceptable to MATLAB. Next
we determined a table of relevant musical note frequencies to
encompass all possible musical notes played in our set of
samples. The useful range of note spans from G2 to C5 (98 Hz
to 523.3 Hz), so our table included every note in between. This
table would prove useful for preprocessing our signal data in
MATLAB.

 Our MATLAB program takes the samples and stores them
internally for quick reference. It will also store input
information like the length of each sample N, the chord of each
sample (i.e. C,D,G,A), and the sampling frequency Fs. The each
recording sample is stored in a row of a matrix, corresponding
with a chord identifier stored in a matrix. MATLAB then
quickly extracts frequency data from each row using the FFT,
and subsequently stores them in a new dataset. The amount of
data retrieved by the FFT is excessive (Fig. 4), so we used our
table of useful frequencies to preprocess the data (Table 1). The
table is hardcoded into our process function, so MATLAB can

index and extract the desired frequencies from our FFT results.
This feature selection was done through dividing the frequency

table by the frequency resolution (Equation 1) and then
indexing the FFT data. This achieves as set condensed and
useful data samples seen in Figure E. The output data is
formatted such that each row is a data sample, and each column
is a note’s magnitude.

Fig.4. Output of FFT

Fig. 5. Output of Process Function

In order to prepare the data for machine learning, we separated
the whole set into train and test sets. In keeping with standard
practices, 75% of the audio files were chosen as a training set.
The frequency matrix as well as the corresponding chord vector
are both separated in this manner. The train set matrix and
vector are sent as arguments to the Treebagger function. The
Treebagger function returns an machine learning model. The
test set of the audio files are used for Cross Validation. We test
to see how good our model’s output is by giving it unfamiliar
chord. So, we pass the model and our test set of the frequency
matrix to Treebagger predict function. Finally, these predicted
chords are compared with the test set of chords in a simple loop
to count how many of the predictions were correct.

427

3. TESTING PROCEDURES

 To review, the MATLAB code is divided into various
sections. It includes inputting the chords, processing the chords,
separating the chords into training and test sets, using the
Treebagger to model the data, and cross-validating.

 We initially loaded files one at a time. On each input, we’d
print out the sampling rate to ensure the frequency was
consistent. Eventually, we needed to load all the audio files at
once. To facilitate this, we stored the .wav files and their chord
names into respective columns in an excel file. The excel file
was then used to identify to MATLAB and load each the entire
set.

 Though the focus of our project was on preprocessing, we
also still had to optimize the performance of Treebagger in
order to prove concept. For bagged classification forest, the
number of trees often significantly impacts the performance of
the learning model. So, part of the testing to improve predictive
accuracy involved plotting an Error-vs-Tree Number Graph to
help improve predictive accuracy:

Fig.6. Out of Bag Error Predictions

4. EXPERIMENT RESULTS AND GRAPHS

We initially had low predictive accuracy in recognizing the
musical chords. Percentages were typically around 20-30%. In
other words, our algorithm was simply guessing. At one point,
attempts to tune our Treebagger algorithm included additional
parameters trying parameters such as ‘MinLeafSize’.
Eventually, we determined that the best performance occurred
for a forest size 30-40 trees, and determined that no other
parameters provided a sizeable improvement. Additional
improvements were made concerning our musical note
frequencies used for indexing and grabbing useful information
from our samples. Originally we used math to determine the
frequencies to process, going from 98 to 523.3Hz in steps of

4Hz (G2 to C5). As this proved problematic, we exchanged this
for an exact hard coded vector of the musical note frequencies.
In addition, we noticed an error in our attempt to take the
magnitude of the FFT samples. Initially, the MATLAB code
used the function real() for this task, but it became clear that the
correct function was abs(). After these changes, the prediction
results for the musical chord recognition increased to 67-89%,
depending on computer seed.

5. CONCLUSIONS

Overall, our musical chord recognition using machine learning
proved successful, as the goal was to score predictive accuracy
of 75% or greater, as well as show that this type of chord
identification could be done with the proper preprocessing. To
this end, we were extremely successful. Increasing the number
of recorded samples, further effort to fine tune the Treebagger
algorithm, or further efforts to finetune feature selection.. In
addition, bagged classification trees are not most reliable
machine learning tool when compared with neural networks or
Randomforest algorithms. Perhaps python could be used to
utilize these machine learning tools. Finally, our task could be
broadened to include more chords or even include identification
of the musical instrument.

TABLE 1. TABLE OF RELEVANT NOTES AND THEIR FREQUENCIES.

428

6. REFERENCES

 [1] Joseph Hoffbeck, “Enhance your DSP course with these interesting
projects”. ASEE annual conference & exposition, 2012.

.

429

