
Interesting Projects To Strenghthen DSP Teaching

Sophie X. Liu, Rohan George Aby, Matthew Samuelson, Tevin Macias, and Emily Garvie
Engineering School, Oral Roberts University, 7777 S. Lewis Ave Tulsa OK 74171, USA

Abstract— Education is moving away from traditional rows of
students looking at the same textbook while a teacher lectures from the
front of the room. Today’s classrooms are evolving to use more
technology and digital resources. Students are more interested
learning technical material if they can see useful applications for it.
When teaching the digital signal processing (DSP) course, it is
possible to develop projects to show how the techniques can be used
in real world application. This paper presents three simple, yet
interesting projects in the author’s undergraduate DSP course to
motivate the students learning the Fast Fourier Transform (FFT).

Keywords—pattern recognition; DSP; digital guttar tuner,
power spectrum density

I. RECOGNIZE HUMAN VOICE
The objective of this project was to write a program in
MATLAB that could analyze an .m4a recorded file of a human
voice and determine what note the voice was in. It would do
this by reading the audio file, then splitting the data into the
file’s frequency and sample data. The Fast Fourier Transform
(FFT) was taken of the sample data and used to plot the graph
of the FFT’s amplitude verses frequency. The sample frequency
from the original file was changed to have the same vector
length as the FFT. The waveform is imperfectly periodic, and
the frequency of the first period was used to find which note
was being sung. A table of the musical note frequencies was
used to determine this, as well as whether or not the note sung
is sharp or flat.

The program could be implemented as a tone adjuster, or an
instrument tuner. If a certain key is desired, the user could
repeated change their input sound in order to change the
frequency to meet a certain note. In order to make this method
more practical and time efficient, the program could further be
improvised to have an instantaneous input. This could be a
microphone or an instrument plugged into to the computer so
that MATLAB could read it. In this way a person would more
practically be able to know the note they are inputting. Also, the
program could be further revised to provide the change of
frequency needed if the note is either flat or sharp. Five
examples were recorded of random voice notes and were
evaluated in the program. Their frequency responses shown in
Fig. 1.1 to 1.5 were graphed and the frequencies were compared
with the excel sheet in Table 1 to determine what key they were
in.

Fig. 1.1 Example 1 Output: The note frequency is 155.2

The key is D# / Eb in octave 3

Fig. 1.2 Example 2 Output: The note frequency is 109.5

The key is A in octave 2

Fig. 1.3 Example 3 Output: The note frequency is 475.3

The key is flat B4 (or sharp A# / Bb4)

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

0

500

1000

1500

2000

2500

3000

3500

Am
pl

itu
de

Frequency Response for unknown1

0 100 200 300 400 500 600 700 800 900 1000
Frequency (Hz)

0

200

400

600

800

1000

1200

1400

1600

1800

Am
pl

itu
de

Frequency Response for unknown2

Am
pl

itu
de

417978-1-7281-6476-2/21/$31.00 ©2021 IEEE ICUFN 2021

TABLE 1.1 MUSICAL NOTE FREQUENCIES AND OCTAVES

Fig. 1.4 Example 4 Output: The note frequency is 105.3
The key is G# / Ab in octave 2

Fig. 1.5 Example 5 Output: The note frequency is 407.8

The note is a flat G# / Ab4 (or sharp G4)

Each example was evaluated using an online virtual keyboard
shown in Fig. 1.6 at the following URL: http://piano-
player.info/. Each determined note closely sounded like the
corresponding note from the virtual keyboard. This shows the
program works and can be relied on to find an accurate note
reading.

Fig. 1.6 Virtual Keyboard

C 0 16.35
C# / Db 0 17.32
D 0 18.35
D# / Eb 0 19.45
E 0 20.6
F 0 21.83
F# / Gb 0 23.12
G 0 24.5
G# / Ab 0 25.96
A 0 27.5
A# / Bb 0 29.14
B 0 30.87
C 1 32.7
C# / Db 1 34.65
D 1 36.71
D# / Eb 1 38.89
E 1 41.2
F 1 43.65
F# / Gb 1 46.25
G 1 49
G# / Ab 1 51.91
A 1 55
A# / Bb 1 58.27
B 1 61.74
C 2 65.41
C# / Db 2 69.3
D 2 73.42
D# / Eb 2 77.78
E 2 82.41
F 2 87.31
F# / Gb 2 92.5
G 2 98
G# / Ab 2 103.8
A 2 110
A# / Bb 2 116.5
B 2 123.5
C 3 130.8
C# / Db 3 138.6
D 3 146.8
D# / Eb 3 155.6
E 3 164.8
F 3 174.6
F# / Gb 3 185
G 3 196
G# / Ab 3 207.7
A 3 220
A# / Bb 3 233.1
B 3 246.9
C 4 261.6
C# / Db 4 277.2
D 4 293.7
D# / Eb 4 311.1
E 4 329.6
F 4 349.2
F# / Gb 4 370
G 4 392
G# / Ab 4 415.3
A 4 440
A# / Bb 4 466.2
B 4 493.9

C 5 523.3
C# / Db 5 554.4
D 5 587.3
D# / Eb 5 622.3
E 5 659.3
F 5 698.5
F# / Gb 5 740
G 5 784
G# / Ab 5 830.6
A 5 880
A# / Bb 5 932.3
B 5 987.8
C 6 1047
C# / Db 6 1109
D 6 1175
D# / Eb 6 1245
E 6 1319
F 6 1397
F# / Gb 6 1480
G 6 1568
G# / Ab 6 1661
A 6 1760
A# / Bb 6 1865
B 6 1976
C 7 2093
C# / Db 7 2217
D 7 2349
D# / Eb 7 2489
E 7 2637
F 7 2794
F# / Gb 7 2960
G 7 3136
G# / Ab 7 3322
A 7 3520
A# / Bb 7 3729
B 7 3951
C 8 4186
C# / Db 8 4435
D 8 4699
D# / Eb 8 4978
E 8 5274
F 8 5588
F# / Gb 8 5920
G 8 6272
G# / Ab 8 6645
A 8 7040
A# / Bb 8 7459
B 8 7902
C 9 8372
C# / Db 9 8870
D 9 9397
D# / Eb 9 9956
E 9 10548
F 9 11175
F# / Gb 9 11840
G 9 12544
G# / Ab 9 13290
A 9 14080
A# / Bb 9 14917
B 9 15804

Am
pl

itu
de

Am
pl

itu
de

418

II. DIGITAL GUTTAR TUNER

A. Methodology
A GUI was created using app designer in MATLAB for easy

interfacing. The GUI has two button options: one is called
“Tune by Ear” and the other is called “Tune by Sight” that is
based on the recording. A dropdown menu allows the user to
select which note they are attempting to generate or verify
tuning with. Two graphs display the frequency data. The
computer tone is on top and recorded tone is on bottom. If the
“Tune by Ear” option is selected, the computer generates the
pitch corresponding to the letter and then the Fast Fourier
Transform is applied and a “Amplitude” vs “Frequency” graph
is displayed for the computer tone. If the “Tune by Sight” option
is selected, the user will play a note on the guitar. The analog
frequency of the note is recorded and then the Fast Fourier
Transform is applied to the signal. Then an “Amplitude” vs
“Frequency” is graphed for both with the user recorded note on
the bottom and computer generated note on top. The two graphs
can then be compared for peak values.

The computer generated frequencies were layered to the
fifth octave to produce a fuller tone and a well-rounded graph.
The frequencies were determined in reference to A /49/440Hz.
Table 2.1 gives the information that is from Piano Key
Frequencies on Wikipedia.

TABLE 2.1 PIANO KEY FREQUENCIES

B. Testing Procedure

This was tested in two parts. First, the “Tune by Ear” option
was selected. Each note was played to make sure the correct
pitch was being generated. The duration of the note was
adjusted and a sampling frequency of 11,025 Hz was chosen for
fast processing time and low resolution audio. Then the “Tune
by Sight” was tested. A guitar was connected through a digital
audio interface for recording the signal. The FFT was then used
to convert this signal to a frequency signal that could be plotted.
Once plotted, the graph was compared to the graph of the
frequency graph of the computer-generated note. The guitar’s

tuning was then adjusted accordingly until the two graphs
correlated.

C. Experimental results
 The guitar’s signal had more peaks than the computer-
generated signal because the guitar string does not generate a
pure tone. This, however, did not affect the ability to determine
which peak should be compared for tuning. In the graphs below,
the recorded frequencies peak at the specified frequency or at
an octave of the frequency.

Fig. 2.1 E-Note.

Fig. 2.2 A-Note.

419

Fig. 2.3 D-Note.

Fig. 2.4 G-Note.

Fig. 2.5 B-Note.

Fig. 2.6 e-Note.

D. Conclusion
In conclusion, this project produced a tuner was capable of

generating tones for the EADGBe strings of a guitar, and used
the Fast Fourier Transform to change computerized frequency
and recorded guitar signal to a frequency graph that can be
compared with each other. In the future, the two graphs could
be overlapped, there could be a more precise reading of how
much adjustment the guitar needs, and it could be made more
portable.

III. DEFINE TWO FEATURES
 The project is to use simple features and pattern recognition
technique to differentiate the male and female voice. The voice
signals are digitized and analyzed first. Two features - power
spectrum density ratio and top frequencies average are
extracted for machine learning and voice recognition.

A. Power spectrum density

 The power spectrum describes the distribution of power into
frequency components composing that time domain signal. The
power spectrum density or power spectral density (PSD) of the
signal describes the power present in the signal as a function of
frequency, per unit frequency. FFT algorithms are fast
algorithms for computing the discrete Fourier transform (DFT).
This is achieved by successive decomposition of the N-
point DFT into smaller-block DFT taking advantage of
periodicity and symmetry. Practically, a PSD is obtained by
taking the amplitude of the FFT, multiplying it by its complex
conjugate and normalizes it to the frequency bin width.
Specifically:

|𝑋𝑋(𝑓𝑓�)| = �� 𝑥𝑥[𝑛𝑛] exp �−
𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑁𝑁
�

���

���

�

𝑃𝑃𝑃𝑃𝑃𝑃 =
|𝑋𝑋(𝑓𝑓�)|�

𝑁𝑁

where |𝑋𝑋(𝑓𝑓�)| is the N point FFT magnitude at bin 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

sequence {𝑥𝑥[0], 𝑥𝑥[1] … 𝑥𝑥[𝑁𝑁 − 1]} for 𝑓𝑓� =
𝑘𝑘
𝑁𝑁 and

𝑘𝑘 = 0, 1, 2, … 𝑁𝑁 − 1.

After calculating PSDs of both male and female voices,
making PSD graphs for two groups, it was observed that
generally the male voice has higher power spectrum density.
The results are in the Fig. 3.1. The blue signal is the male voice
and the brown signal is the female voice.

420

Fig. 3.1 Power spectrum density of the two sexes.

B. Feaure 1: PSD Ratio- PSDR
We want to define a feature relevant to PSD

independent of individual magnitude of PSD. One would be
taking the average of the magnitude of the FFT components that
correspond to the high frequencies (0 to 6000Hz) and dividing
it by the average of the magnitude of the FFT components that
correspond to the low frequencies (6001 to 11000Hz). The
feature is denoted as PSDR, a ratio of PSD. Let Mj be the
magnitude of PSD at frequency 𝑓𝑓� for a voice sample and 𝑗𝑗 =
0, 1, 2, … , mid, … 𝑄𝑄. 𝑓𝑓��� = �����

�
 . 𝑓𝑓��� is the median of the

frequency range.

PSDR =

1
𝑄𝑄 − 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃�

�
�����

1
𝑚𝑚𝑚𝑚𝑚𝑚 − 1 ∑ 𝑃𝑃𝑃𝑃𝑃𝑃�

�����
���

C. Feature 2: Top frequenies average- Top10

Consider a fact that the highest frequency the

voiced speech of a typical adult male can reach is lower than
that a typical adult female can do. It would be necessary to add
a feature that can distinguish male and female voices through
the high range of frequencies. Therefore, we define top
frequencies average as follows:

TOP10 = average of top 10% frequencies in a voice

IV. MACHINE LEARNING AND RECOGNITION

We take total N voice samples. Half of them are
female voices forming a female group. The another half are
male voices forming a male group. In both groups we take 70%
samples respectively for machine learning/training forming a
training group. The rest samples (30%) for each group are for
recognizing/testing the algorithm forming a testing group.

A. Machine learning
 For each sample in the training group, calculate PSDR

and Top10. Calculate the maximum and minimum of PSDR for
female group and male group respectively. Calculate the
maximum and minimum of Top10 for female and male group
respectively. Because this is supervised learning, we can the
ranges of each feature for female and male. For example,
Top10 in the female group falls in the range of [Top10_min_F,
Top10_max_F] and that in the male group falls in
[Top10_min_M, Top10_max_M]; PSDR in the female group
falls in the range of [PSDR_min_F, PSDR_max_F] and that in
the male group falls in [PSDR_min_M, PSDR_max_M].

B. Recognition processing
During the recognition process, the table 3.1 is used to
distinguish the female and male voices. Only samples in the
testing group are involved in this process. For kth sample in the
testing group we need calculate its PSDR and Top10. Here we
use PSDR_k and Top10_k for the features of kth sample.

If PSDR_k ∈ [PSDR_min _F ± ∆�, PSDR_max _F ± ∆�] ∩
Top10_k ∈ [Top10_min_𝐹𝐹 ± ∆�, Top10_max_𝐹𝐹 ± ∆�]
kth sample -> female voice

If PSDR_k ∈ [PSDR_min _M ± ∆��, PSDR_max _M ± ∆��] ∩
Top10_k ∈ [Top10_min_𝑀𝑀 ± ∆��, Top10_max_𝑀𝑀 ± ∆��]
kth sample -> male voice

Otherwise reject, need further distinguish

Where ∆�, ∆�, ∆�, ∆� , ∆��, ∆��, ∆��, and ∆�� are pre-
determined parameters based on given knowledge and
experience. This project was to acquire voice samples of males
and females reading John 3:16, bible verse in the Bible NIV
version that were used was 50 and 50 voice samples
respectively.

We use two simple features described above achieves a
recognition rate of 89% in deciding between female and male
voices in the testing samples. It illustrates how the PSD ratio
and top frequencies average of an audio signal can be used for
differentiating the male and female voice. To increase the
recognition rate, more features and more training samples could
be included.

REFERENCES
[1] https://en.wikipedia.org/wiki/Piano_key_frequencies

421

