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Abstract—Quantum deep learning is a research field for the
use of quantum computing techniques for training deep neural
networks. The research topics and directions of deep learning and
quantum computing have been separated for long time, however
by discovering that quantum circuits can act like artificial neural
networks, quantum deep learning research is widely adopted.
This paper explains the backgrounds and basic principles of
quantum deep learning and also introduces major achievements.
After that, this paper discusses the challenges of quantum deep
learning research in multiple perspectives. Lastly, this paper
presents various future research directions and application fields
of quantum deep learning.

I. INTRODUCTION

As quantum computing and deep learning have recently
begun to draw attentions, notable research achievements have
been pouring over past decades. In the field of deep learn-
ing, the problems which were considered as their inherent
limitations like gradient vanishing, local minimum, learning
inefficiencies in large-scale parameter training are gradually
being conquered [1]. On the one hand, innovative new deep
learning algorithms such as quantum neural network (QNN),
convolutional neural network (CNN), and recurrent neural
network (RNN) are completely changing the way various
kinds of data are processed. Meanwhile, the field of quantum
computing has also undergone rapid developments in recent
years. Quantum computing, which has been recognized only
for its potential for a long time, has opened up a new era
of enormous potentials with the recent advances of variational
quantum circuits (VQC). The surprising potentials of the varia-
tional quantum algorithms were made clear by solving various
combinatorial optimization problems and the intrinsic energy
problems of molecules, which were difficult to solve using
conventional methods, and further extensions are considered
to design machine learning algorithms using quantum comput-
ing. Among them, quantum deep learning fields are growing
rapidly, inheriting the achievements of existing deep learning
research. Accordingly, numerous notable achievements related
to quantum deep learning have been published, and active
follow-up studies are being conducted at this time. In this pa-
per, we first briefly introduce the background knowledge, basic
principles of quantum deep learning, and look at the current
research directions. We then discuss the various directions and
challenges of future research in quantum deep learning.

A. Quantum Computing

Quantum computers use qubits as the basic units of com-
putation, which represent a superposition state between |0〉
and |1〉 [2]–[5]. A single qubit state can be represented as a
normalized two-dimensional complex vector, i.e.,

|ψ〉 = α|0〉+ β|1〉, ‖α‖2 + ‖β‖2 = 1 (1)

and ‖α‖2 and ‖β‖2 are the probabilities of observing |0〉 and
|1〉 from the qubit, respectively. This can be also geometrically
represented using polar coordinates θ and φ,

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉, (2)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ π. This representation maps a
single qubit state into the surface of 3-dimensional unit sphere,
which is called Bloch sphere. A multi qubit system can be
represented as the tensor product of n single qubits, which
exists as a superposition of 2n basis states from |00...00〉
to |11...11〉. Quantum entanglement appears as a correlation
between different qubits in this system. For example, in a 2-
qubit system 1√

2
|00〉+ 1√

2
|11〉, the observation of the first qubit

directly determines that of the second qubit. Those systems are
controlled by quantum gates in a quantum circuit to perform
a quantum computation on its purpose [6], [7].

Quantum gates are unitary operators mapping a qubit system
into another one, and as classical computing, it is known that
every quantum gate can be factorized into the combination
of several basic operators like rotation operator gates and CX
gate [8]. Rotation operator gates Rx(θ), Ry(θ), Rz(θ) rotates
a qubit state in Bloch sphere around corresponding axis by θ
and CX gate entangles two qubits by flipping a qubit state if
the other is |1〉. Those quantum gates utilizes quantum super-
position and entanglement to take an advantage over classical
computing, and it is well known that quantum algorithms
can obtain an exponential computational gain over existing
algorithms in certain tasks such as prime factorization [9].

II. QUANTUM DEEP LEARNING

A. Variational Quantum Circuits (VQC)

A variational quantum circuit (VQC) is a quantum circuit
using rotation operator gates with free parameters to perform
various numerical tasks, such as approximation, optimization,
classification. An algorithm using a variational quantum circuit
is called variational quantum algorithm (VQA), which is
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a classical-quantum hybrid algorithm because its parameter
optimization is often performed by a classical computer.
Since its universal function approximating property [10], many
algorithms using VQC [11] are designed to solve various
numerical problems [2], [8], [12]–[14]. This flow led to many
applications of VQA in machine learning and is also for re-
placing the artificial neural network of the existing model with
VQC [15]–[18]. VQC is similar to artificial neural networks in
that it approximates functions through parameter learning, but
has differences due to the several characteristics of quantum
computing. Since all quantum gate operations are reversible
linear operations, quantum circuits use entanglement layers
instead of activation functions to have multilayer structures.
These VQCs are called quantum neural networks, and this
paper will look at them through classification according to
their structure and characteristics.

B. Quantum Neural Networks

Fig. 1. Illustration of QNN with the input |ψ〉, the parameter θ and linear
entanglement structure.

In this section, we try to demonstrate how a basic quantum
neural network(QNN) works with a simple example described
in the Fig. 1. The way a QNN processes data is as follows.
First, the input data is encoded into the corresponding qubit
state of an appropriate number of qubits. Then, the qubit state
is transformed through the parameterized rotation gates and
entangling gates for a given number of layers. The transformed
qubit state is then measured by obtaining expected value of a
hamiltonian operator, such as Pauli gates. These measurements
are decoded back into the form of appropriate output data.
The parameters are then updated by an optimizer like Adam
optimizer. A neural network constructed in the form of VQC
can perform various roles in various forms, which will be
explored as quantum neural networks.

Fig. 2. Illustration of QCNN with the input |ψ〉, the parameter θ with single
convolution and pooling layer.

1) Quantum Convolutional Neural Networks: Quantum
convolutional neural network (QCNN) was proposed in [16],
implementing the convolution layer and pooling layer on the
quantum circuits. According to the previous research results in
[5], [19], the QCNN circuit computation proceeds as follows.
The first step is same as any other QNN models, encoding
input data into a qubit state with rotation operator gates. Then
the convolution layer with quasi-local unitary gates filters
the input data into a feature map. The pooling layer with
controlled rotation operators then downsizes the feature map.
By repeating this process sufficiently, the fully connected layer
acts on the qubit state as classical CNN models. Finally, the
measurement of the qubit state is decoded into an output data
with desired sizes. The circuit parameters are updated with
gradient descent based optimizer after each measurements.

Unfortunaltely, in the current quantum computing envi-
ronment [20], QCNN is difficult to perform better than the
existing classical CNN. However, it is expected that the QCNN
will be able to obtain sufficient computational gains over
the classical ones in future quantum computing environment
where larger-size quantum calculations are possible [5], [16].

III. FUTURE WORK DIRECTIONS AND CHALLENGES

A. Applications of Quantum Deep Learning to Reinforcement
Learning

There are many research results applying deep learning to
reinforcement learning to derive optimal actions from a com-
plex state space [21]–[24]. However, reinforcement learning
research using quantum deep learning [18], [25], [26] is still
in its infancy. The current approach step is to replace the policy
training network with a quantum neural network from the
existing deep neural network, but there remains the possibility
of many algorithms applying various ideas of classical deep
reinforcement learning researches. In particular, if it is proved
that quantum computational gains can be obtained through
QNN in a situation of high computational complexity due to
the complex Markov decision process environment, quantum
reinforcement learning will open a new horizon for reinforce-
ment learning research.

B. Applications of Quantum Deep Learning to Communica-
tion Networks

The QNN and quantum reinforcement learning algorithms
can be used in various research fields, and this paper considers
the applications in terms of communications and networks. In
terms of the acceleration of computation in fully distributed
platforms, e.g., blockchain [27], [28], QNN can be used.

In addition, various advanced communication technologies
such as Internet of Things (IoT) [29], [30], millimeter-wave
networks [31], [32], caching networks [33]–[36], and video
streaming/scheduling [37]–[40] are good applications of QNN
and quantum reinforcement learning algorithms.

C. Challenges

1) Gradient Vanishing: Vanishing gradient is a crucial
problem in quantum deep learning as of classical deep learn-
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ing. The problem of gradient disappearance while backprop-
agating many hidden layers has been considered a chronic
problem in deep neural network computation. Since quantum
neural networks also use gradient descent method training
their parameters as classical ones, they have to solve the same
problem. Classical deep learning models solve this problem by
utilizing an appropriate activation function, but quantum deep
learning does not use an activation function, thus eventually, a
different solution is needed. A former research [41] called this
quantum gradient vanishing pheonomena as barren plateaus,
while proving that when the number of qubits increases, the
probability of occurring barren plateaus increases exponen-
tially. This can be avoided by setting good initial parameters
in small-scale QNN, but it is unavoidable to deal with this
problem when designing large-scale QNN. This is an open
problem for which a solution is not yet clear.

2) Near-Term Device Compatibility: Noisy intermediate
scale quantum (NISQ) [20], which means fewer qubits and a
lot of computational error of near-term quantum devices, has
already become a familiar term to quantum researchers. Many
algorithms designed to implement quantum computational
gains do not work at all in this NISQ environment, and are
expected to be implemented at least several decades later. For
example, a practical implementation of the Shor’s algorithm
requires at least thousand of qubits even without an error
correction processes, current quantum devices have only a few
tens of qubits with non-negligible computational error rate of
several percent. However, due to the relatively small circuit
depth and qubit requirements, VQA and QNN based on them
are tolerant to these environmental constraints. Nevertheless,
in order to increase the data processing capability of quantum
neural network, it is necessary to consider near-term device
compatibility. For example, using many multi-qubit controlling
gates for quantum entanglement is theoretically thought to
increase the performance of QNN, but it entails a large error
rate and a complicated error correction process. Therefore, it
is essential to design an algorithm regarding these tradeoffs in
quantum deep learning research.

3) The Quantum Advantage: The term quantum supremacy
may lead to the illusion that quantum algorithms are always
better than classical algorithms performing the same function.
However, given the inherent limitations of quantum comput-
ing, quantum computing benefits can only be realized through
well-thought-out algorithms under certain circumstances. In
fact, especially among variational quantum-based algorithms,
only a few of them have proven their quantum advantage in a
limited situation.

Due to the universal approximation property of QNN, it
is known that quantum deep learning can perform most of
the computations performed in classical deep learning [10].
Nevertheless, if one approaches simply based on this fact
without the consideration of quantum gain, the result may be
much inefficient compared to the existing classical algorithm.
Therefore, in designing a new QNN-based deep learning algo-
rithm, it is necessary to justify it by articulating its advantages
over the corresponding classical models.

IV. CONCLUSION

This paper introduces the basic concepts of quantum neural
networks and their applications scenarios in various fields. Fur-
thermore, this paper presents research challenges and potential
solutions of quantum neural network computation.
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