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Abstract—The integration of artificial intelligence with home
energy management systems (HEMS) due to the development of
advanced metering infrastructure is a promising scheme to im-
prove the usage of renewable energy in a residential application.
In the paper, energy management among multiple co-operative
households with PV-Storage integrated generation system in a
home micro-grid in the presence of short-term prediction of
power generation and consumption is studied. In such a home
microgrid system, the central energy storage system (C.ESS) is
considered that is connected with multiple household and PV
panels. The key parameters that are responsible for optimum
scheduling of C.ESS are forecasted PV power generation, fore-
casted household energy consumption, dynamic state of charge
(SOC), and base level of energy consumption. In this paper,
firstly, the prediction of short-term generation and consumption
based on the long short-term memory (LSTM) algorithm is done.
Then, this forecasted data is used as the constraint to the control
algorithm for optimum scheduling. Therefore, the amount of
power that will be supplied from C.ESS is also determined for
properly utilizing the stored energy. The simulation results of
the proposed scheme show the robustness and effectiveness in
the home microgrid environment.

Index Terms—Central energy storage system (CESS), LSTM,
energy management, control system.

I. INTRODUCTION

Because of the large expansion of industries, factories, and
higher growth population, the demand for electrical energy
in many sectors has increased substantially. Because of this,
the integration of electrical devices in various applications
grows, resulting in increased power demand. According to
the International Energy Agency (IEA), global demand for
electrical energy will grow at a rate of 2.1 percent per year
until 2040. Furthermore, overall energy consumption will rise
from 19 percent in 2018 to 24 percent in 2040 [1]. Consumers’
modernistic lifestyles are also to blame for rising energy
demand over the previous several decades.

However, the usage of PV systems integrating ESS in
the home is rising on a daily basis. However, the ESS is
utilized in the network for a variety of services such as
peak shaving, islanding, load shaving, capacity firming, power

quality enhancements, and intermittency handling [2]-[3]. As
a result, ESS may store energy during off-peak hours while
still supplying electricity to the grid during peak load hours.

The fundamental feature of the demand response is that it is
dynamic, meaning that it is determined by the user’s behavior
and seasonal conditions. Similarly, the characteristic of PV
generation is dynamic and depends on a variety of parameters.
When many household appliances are used at the same time,
the system experiences peak power consumption. Because of
these dynamic characteristics, there is an imbalance between
energy consumption and PV generation in a certain home.
Furthermore, the problem is exacerbated by the amount of
ESS charging and discharging. The combination of traditional
ESS with PV seeks to alleviate this difficulty by delivering and
storing electricity as needed. However, owing to the lack of a
dynamic optimization and management system, it was unable
to resolve successfully. To address these dynamic DR and PV
production issues, an energy management system [4] in ESS
must be built to mitigate their demands. Because of this, an
energy management system with multiple households using a
shared energy storage system (C.ESS) system may play an
essential role in the smart grid environment by keeping up
with massive demand.

One of the most difficult challenges for ESS is to manage
the scheduling of charging and discharging periods in order
to provide optimal power distribution among the households
[5]–[7]. In [8], the period of connecting loads is changing
according to their preferences and requirements in order to
decrease energy costs. An effective scheduling approach is
created and implemented in a residential dwelling for reducing
energy costs by scheduling energy usage where PV and ESS
are coupled in the micro-grid system [9]—[12]. The authors of
those articles concentrate on charging and discharging times
without taking into account predicted PV power generation and
the energy demand of the households. Consequently, the ESS
discharges its stored energy even at the time of PV generation
instead of charging. In addition, the appliances grain power
from the grid at the time of peak demand because of not having
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Fig. 1. Overall architecture of the system.

sufficient charge in the ESS.
In this paper, we design a C.ESS by integrating novel

optimization and management algorithm for scheduling, sup-
plying, and storing power in the ESS based on State of Charge
(SOC) and predicted power generation and consumption. The
Long short-term memory (LSTM) algorithm is applied to
predict power generation and consumption [13]. Employing
the prediction result, we design a heuristic algorithm for
scheduling and determining the volume of supplying and
storing energy in ESS. In addition, the amount of grid power
is also measured in the proposed system.

The main contribution of this article is to design a mathe-
matical model for integrated PV-ESS for multiple households.
Therefore, we implement this scheme for scheduling central
ESS among multiple households by including a unique opti-
mization and management method which is based on State of
Charge (SOC) and forecasted power generation and consump-
tion of each household. To predicted electricity generation and
consumption, the long short-term memory (LSTM) algorithm
is used [13]. Using the prediction result, we create a heuristic
method for scheduling the charging and discharging period of
the energy storage.

This paper organizes as follows: Section II describes the
mathematical model for the proposed system. Simulation re-
sults and the corresponding discussion are illustrated in section
III. Finally, the conclusion of this work is presented in section
IV.

II. METHODOLOGY

The demand of electrical energy is a continuous process.
The energy demand of households varies with time governed
by many factors such as the consumer’s lifestyles, seasonal
conditions, and the surrounding conditions of the consumer.
Though the energy consumption pattern of the residential
customer may follow similar trends, the consumption volume
always varies from customer to customer. In the proposed
system, we are considering multiple households consisting of
a small microgrid integrating with the PV and C.ESS system.
The integration of C.ESS in a low voltage (LV) grid is shown
in Fig.1. In [14], we have already developed a scheduling

Fig. 2. LSTM model architecture.

approach of D.ESS for single households. In this paper, the
proposed algorithm focuses on the scheduling for C.ESS in
the case of multiple households with associated residential
appliances.

In this section, we present the brief working principle of the
forecasting algorithm and the scheduling scheme for C.ESS.

A. Long Short Term Memory

In this paper, we have used a time series forecasting model
known as Long short-term memory (LSTM) network for
forecasting power generation and consumption. The significant
reasons for choosing the LSTM model [15] are having short-
term memory and the ability to remove the vanishing gradient
problem of recurrent neural network (RNN). For the long
sequence forecasting problems, the internal gates of LSTM can
regulate the flow of information. The data which has a strong
correlation with time series is used in the LSTM model for
better performance. For this reason, we will train the model
by using the six-month energy generation and consumption
data of a domestic house. The sampling between each data
point was 15 minutes. A typical LSTM unit consists of an
entrance gate, a gate, an output gate, and a cell unit [16].
Without making any changes in the LSTM architecture, the
cell state (Ct) executes the proper flow of information. Three
gates regulate the execution of the cell state. The first gate
namely forgets gate controls the forgetting mechanism of the
cell vector Ct−1. ft is an output vector of the sigmoid layer
with values ranging from 0 to 1.

ft = σ (Wf [ht−1, xt] + bf ) (1)

Afterwards, the value is updated by input gate it within 0 to
1 range.

it = σ (Wi [ht−1, xt] + bi) (2)

The old cell states Ct−1 gets updated into Ct by the following
equation:

Ct = ft ∗ Ct−1 + (1− ft) ∗ C̄t (3)

where, C̄t is called potential vector ranging from 0 to 1 and
can be represented as :

C̄t = tanh (Wc [ht−1, xt] + bC) (4)
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where, tanh is defined as hyperbolic tangent function. Finally,
the output ot of the output gate which is governed by the
following equation:

ot = σ (Wo [Ct, ht−1, xt] + bo) (5)

The hidden state ht is calculated by:

ht = ot.tanh(Ct) (6)

Fig. 2 shows the general architecture of the LSTM model. We
apply this model in the solar power generation and household
energy consumption data in this paper.

B. Scenario of Household Demand

In this section, the constraints and dependencies for the
proposed algorithm based on the demand of the multiple
households are described. Now consider the energy consump-
tion of the household is PH

D,t(t). Since we have considered the
prediction model, the forecasted energy consumption can be
defined as PH

FD,t(t). If, the house contains N ∈ Z number of
appliances, total power consumption at time t can be expressed
as follows:

PH
D,t(t) =

N∑
i=1

PH,Ai

D,t (t) (7)

Similarly, we can determine PH2
D,t(t), P

H2
D,t(t), and PH3

D,t(t) for
household no. 1 (H1), household no. 2(H2), and household
no. 3 (H3). The total power consumption from t end of the
present day (ted) is defined as follows as:

PH
D,t−tend

(t) =

e∑
j=1

N∑
i=1

PH,Ai

FD,τ (jτ)−
k∑

j=1

N∑
i=1

PH,Ai

D,t (t− jτ))

(8)

t ∈ [0, 24], e =
24

τ
, and k = (

t

τ
− 1) where, t = hour

t ∈ [0, 1440], e =
1440

τ
, and, k = (

t

τ
− 1)where t = minute

The average forecasted power consumption in a household for
24 hours can be defined as follows:

PH,Avg
FD,tst−ted

=

∑n
i=1

∑e
j=1 P

H,Ai

τ,d (jτ)

e
(9)

For dynamic average power from t to ted can be expressed as:

PH,Avg
FD,t−ted

(t) =
PH
FD,t−ted

(t)

e− k
(10)

Similarly, the average power of single day for three household
can be defined as PH1,Avg

FD,tst−ted
, PH2,Avg

FD,tst−ted
, and PH3,Avg

FD,tst−ted
.

Therefore, the dynamic average power for three household can
be express as PH1,Avg

FD,t−ted
(t), PH2,Avg

FD,t−ted
(t), and PH3,Avg

FD,t−ted
(t).

The constraints for the power consumption can be expressed
as follows:

PH1,Base
D,t � PH1

D,t(t) � PH1,Peak
D,t (11)

PH2,Base
D,t � PH2

D,t(t) � PH2,Peak
D,t (12)

PH3,Base
D,t � PH3

D,t(t) � PH3,Peak
D,t (13)

C. Scenario of PV Power

The proposed model emphasis on the single PV generation
system integrated with C.ESS. For modeling the PV power
constraints and dependencies, we can consider PV power
generation and forecasted PV power generation which is
defined as EPV

t,d (t) and EPV
t,dh(t), respectively. The total power

generation at time t can be expressed as follows:

EPV
G,t (t) =

N∑
i=1

EPV,Mi

G,t (t) ∗ ξMi

PV (t) (14)

where ξMi

PV (t) is describes On/Off status of the PV module at
time t. Depending on the activity of the PV power generation,
the ξMi

PV (t) ∈ [1, 0] continuously varies with time t. Since
the PV power generation significantly depends on the solar
irradiance, the generation of PV will be start from the time
when the PV panel will touch in sun light. The generation
starting time is t ∈ [tst, ted], where j = 0 at starting time and
p = ted/τ and q = (t−tst)

τ . The total power generation from
t is defined as follows as:

EPV
G,t (t) =

p∑
j=0

N∑
i=1

EPV,Mi

G,t+τ (tst + jτ) ∗ ξMi

PV (t) (15)

The average generation of a single day can be defined as:

EPV
Avg,d =

EPV
G,t (t)

p
(16)

The total power generation from t to ted can be defined as
follows:

EPV
G,t−ted

(t) =

p∑
j=0

N∑
i=1

EPV,Mi

G,τ (tst + jτ) ∗ ξPV
Mi

(t)

−
q∑

j=0

N∑
i=1

EPV,Mi

G,t+τ (t− jτ) ∗ ξPV
Mi

(t)

(17)

For dynamic average power from t to ted can be expressed as:

EPV
Avg,dr(t) =

EPV
G,t−ted

(t)

p− q
(18)

D. Scenario of ESS Power

In this paper, we consider a shared energy storage system
that is connected to the local PV site. We call this ESS a
central energy storage system (C.ESS). The constraint for
charging and discharging of the ESS must be governed by the
parameters of the PV generation system. Now, we consider the
state of charge of the C.ESS is SOCC.ESS

t . The constraints
for delivering power to C.ESS can be expressed as follows:
a) the PV power generation should be greater than a certain
threshold level, and b) the SOCC.ESS

t of the C.ESS must be
less than the maximum charging capacity of the ESS.

SOCC.ESS
t (t) � SOCC.ESS

t,min , SC.ESS
t,c (19)

SOCC.ESS
t (t) � SOCC.ESS

t,max , (1− SC.ESS
t,c ) (20)

where SC.ESS
t,c are binary variables expressing the charg-

ing/discharging status of the ESS. SOCC.ESS
t,min (t) and
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SOCC.ESS
t,max presented the minimum and maximum state of

charge of the ESS. Therefore, the discharging range of the
ESS can be represented as:

SOCC.ESS
t,min � SOCC.ESS

t (t) � SOCC.ESS
t,max (21)

E. Scheduling Approach for C.ESS

In the proposed scheduling scheme, we have considered
multiple households that are connected with C.ESS which
share its energy among households. From the C.ESS, each
household will take energy based on some conditions and
dependencies. Since the charging and discharging process in
energy storage is not possible at the same time, we consider
the charging time at the time of generation, and the rest of
the time will be considered as discharging time based on the
level of SOC. The constraints of scheduling for the charging
ESS is described as follows:

EPV
G,th � EPV

G,t (t), SC.ESS
t,c (22)

SOCC.ESS
t+1 (t+ 1) = EPV

G,t (t) + SOCC.ESS
t (t) (23)

EPV
G,th > EPV

G,t (t), (1− SC.ESS
t,c ) (24)

The proposed scheme is scheduled in a such way that the
C.ESS will supply energy to two different households simul-
taneously. The constraints of scheduling for discharging ESS
can be expressed as:

PH1,Avg
FD,tst−ted

(t) � PH2,Avg
FD,tst−ted

(t) (25)

PH1,Avg
FD,tst−ted

(t) < PH2,Avg
FD,tst−ted

(t) (26)

PH1,Avg
FD,tst−ted

(t) � PH3,Avg
FD,tst−ted

(t) (27)

PH1,Avg
FD,tst−ted

(t) < PH3,Avg
FD,tst−ted

(t) (28)

PH2,Avg
FD,tst−ted

(t) � PH1,Avg
FD,tst−ted

(t) (29)

PH2,Avg
FD,tst−ted

(t) < PH1,Avg
FD,tst−ted

(t) (30)

PH2,Avg
FD,tst−ted

(t) � PH3,Avg
FD,tst−ted

(t) (31)

PH2,Avg
FD,tst−ted

(t) < PH3,Avg
FD,tst−ted

(t) (32)

PH3,Avg
FD,tst−ted

(t) � PH1,Avg
FD,tst−ted

(t) (33)

PH3,Avg
FD,tst−ted

(t) < PH1,Avg
FD,tst−ted

(t) (34)

PH3,Avg
FD,tst−ted

(t) � PH2,Avg
FD,tst−ted

(t) (35)

PH3,Avg
FD,tst−ted

(t) < PH2,Avg
FD,tst−ted

(t) (36)

From LSTM, the predicted consumption and generation data
have driven algorithm 1 by considering several conditions for
scheduling. For ensuring the good health of the battery the
SOCESS

min and SOCESS
max are defined by the consumer.

SOCC.ESS
t+1 (t+ 1) = SOCC.ESS

t (t)− PH
Dis,t(t) (37)

{
PH1

Dis,t(t), P
H2

Dis,t(t), P
H3

Dis,t(t)
}
∈ PH

Dis,t(t)

Algorithm 1 ESS power management algorithm
Input:

• Predicted power consumption and PV power generation
data

• Threshold SOC of C.ESS and threshold value of PV
generation

Output:
• Charging and discharging schedule of C.ESS

1: begin
2: ask EPV

G,th, SOCC.ESS
t,min and SOCC.ESS

t,max of ESS
3: Determine SOCC.ESS

t (t) at the beginning
4: for every household and PV system do
5: for every certain interval do
6: Total actual and forecasted energy demand
7: Average actual and forecasted energy demand
8: Total actual and forecasted power generation
9: Average actual and forecasted power generation

10: end for
11: end for
12: for every certain interval do
13: if EPV

G,th > EPV
G,t (t), and SOCC.ESS

t,min �
SOCC.ESS

t (t) � SOCC.ESS
t,max then

14: if Compare PH,Avg
FD,tst−ted

(t) with each other house-
hold then

15: Discharge period for two highest demanded house-
holds

16: No discharge period for rest of the household
17: Compute SOCC.ESS

t+1 (t+ 1) by eqn. (37)
18: else
19: Discharge period for households
20: Compute SOCC.ESS

t+1 (t+ 1) by eqn. (37)
21: end if
22: else if EPV

G,th > EPV
G,t (t) then

23: Only charging period is available
24: Compute SOCC.ESS

t+1 (t+ 1) by eqn. (23)
25: end if
26: end for
27: end

III. RESULT AND DISCUSSION

In this paper, we take into account multiple households
connected with a central energy storage system integrated
with the PV site. The historic data of energy consumption
the households and PV generation are taken from the smart
meter and PV site, respectively. we have used a six-month
data-set of PV power generation and energy consumption
of three households. The simulation result of the proposed
scheduling algorithm is presented in Fig. 3 and Fig. 4. The
simulation results cover from 10/08/2020 to 10/09/2020 days
power generation and consumption data which is shown in
both figures. Fig. 3 presents the scheduling time of charging
C.ESS, actual PV power generation, and forecasted PV power
generation. From this figure, it can be found that the maximum
power generation is approximate 0.7 (kW). When the volume

402



10/8/2020 00:00 10/8/2020 10:00 10/8/2020 20:00 10/9/2020 06:00 10/9/2020 16:00

-0.2

0.0

0.2

0.4

0.6

0.8

Po
w

er
(k

W
)

Time (hour)

PV Power Generation Forecasted PV Power Generation

0

1

2

3

4

5

6
Charging Period

O
n/

O
ff

Si
gn

al

Fig. 3. PV power generation and schedule for charging C.ESS.
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Fig. 4. Actual and forecasted enegy consumption with discharging schedule for C.ESS.

Fig. 5. Periods of discharging of each households.

of PV power generation crosses the minimum threshold value,
the C.ESS will start charging. In this case, we have chosen the
threshold value which is .05 (kW). At the period of PV power
generation, the generated PV power is stored in C.ESS and
the appliances have taken power from the grid. In the rest
of the period, HESS and grid provide power to the system
for removing peak demand that leads the C.ESS for efficient
discharging.

Fig. 4 illustrates the actual and forecasted energy demand
of H1, H2, and H3 at every 15 minutes interval. Since the
system is considered a dynamic process, the average power of
any certain time is different from other times. The discharging

schedule depends on the forecasted power (i.e., total and
average). According to the proposed algorithm, the scheduling
period is determined. From the figure, it can be seen that the
C.ESS supplies power to multiple households at the same time.
Fig. 5 presents discharging period for better observation. from
this figure, We can see that the shortest scheduling time for
discharging belongs to H1 due to having the least amount
of energy demand. On the other hand, the H3 provides the
longest discharging period among all households. From both
graphs, it can be observed that the proposed system managing
charging and discharging time C.ESS is the function of the
predicted power generation and power consumption.

IV. CONCLUSION

Effective power management among the loads is considered
a significant process of utilizing renewable energy resources.
In this study, we have designed and developed an algorithm for
the optimal scheduling period of a shared ESS among multiple
households. For developing the scheme, we have considered
a prediction model for better optimal results. The forecasting
task is performed by a deep learning-based LSTM algorithm.
The prediction models provide satisfactory results with higher
accuracy. Afterward, we have investigated the performance of
the scheduling algorithm. The charging-discharging schedul-
ing pattern of C.ESS evaluates the efficacy of our designed
scheduling algorithm. We have found the longest discharging
time for H2 and shortest for H1 due to the volume of
demanded energy. In the future, hybridization of optimization
algorithm with the proposed scheduling algorithm will provide
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better and efficient solutions in the sector of home energy
management systems.
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