
OA-GAN: Overfitting Avoidance Method of GAN
oversampling based on xAI

Jiha Kim and Hyunhee Park*
dept. Information and Communication Engineering

Myongji University
Yongin, Korea

yaki5896@mju.ac.kr, hhpark@mju.ac.kr*

Abstract—The most representative method of deep learning is
data-driven learning. These methods are often data-dependent,
and lack of data leads to poor learning. There is a GAN method
that creates a likely image as a way to solve a problem that lacks
data. The GAN determines that the discriminator is fake/real
with respect to the image created so that the generator learns.
However, overfitting problems when the discriminator becomes
overly dependent on the learning data. In this paper, we explain
overfitting problem when the discriminator decides to fake/real
using xAI. Depending on the area of the described image, it
is possible to limit the learning of the discriminator to avoid
overfitting. By doing so, the generator can produce similar but
more diverse images.

Index Terms—GAN, xAI, Generator, Discriminator, Overfitting

I. INTRODUCTION

Deep learning learns data to generate models for classifying
and predicting results. In the learning process, data is pro-
ceeded with training data, validation data, and test data. If there
is no validation data, the model may become overly dependent
on learning data, resulting in overfitting problems. In addition,
if the data is too imbalanced, classification for a particular
class may not be achieved or predicted. To address these
overfitting and data imbalances, users must choose between
oversampling and undersampling when dealing with data. If
you have enough data, you can do undersampling, but usually
use oversampling to increase the data. A typical oversampling
method is data augmentation.

Data augmentation is a method for creating new images
using existing images, and there are image-based methods
and deep learning-based methods. Among these, image-based
methods are commonly used, and are a method that transforms
existing images and creates new ones. However, if you really
need a new data sample, it does not work. Deep learning-
based methods use existing images, but create new images
from them. Typical methods include Generator Adversarial
Nets (GAN) [1].

A GAN consists of a generator that produces images and
a discriminator that identifies the images that are generated.
Existing GANs cannot create images of RGB channels. This
is why Deep Convolutional GAN (DCGAN) [2] is used.

Although DCGAN has the same mechanism as GAN, it
has the advantage of creating both RGB channels. But, the
question arises whether images made of DCGAN can be

trusted. In fact, image learning is done in a fairly large epoch
(e.g., usually the number of times the entire epoch multiplied
by a dataset/batch), but it may not be satisfactory for whether
the image is truly meaningful. In Reduced Net (RedNet) [3]
paper, creating images using DCGAN was successful, but it
is judged not to be meaningful. It is necessary to explain this
model to determine whether the generated image is meaningful
and reliable. methods for describing models include Local
Interpretable Model-agnostic Explanations (LIME) [4] and
SHapley Additive exPlanations (SHAP) [5].

The LIME method is a method that shows the basis for
which areas the model used to judge when predicting data.
One of the great advantages of LIME is that it can be applied
regardless of how it is learned(i.e., Model-agnostic). SHAP
methods utilize the independence between shapely value and
feature. Shapely value utilizes the contribution of each feature.
It is to utilize how much the prediction results change except
for a particular feature.

xAI-GAN [6] using these xAI methods shows that the qual-
ity of images generated using MNIST and FMNIST datasets
has increased by up to 23.18%. However, the created images
are created with images similar to the learning data, indicating
that the generator creates images similar to the learning data.

In this paper, we describe the generated and real images
to prevent the discriminator from being overly dependent on
data. To limit the learning of the discriminator by viewing the
described images, we propose a method to prevent overfitting
using a value called threshold.

II. OA-GAN MODEL PARAMETER

This section describes a model for discriminating and gener-
ating images using DCGAN. The data used to learn the model
are the ‘CIFAR-10’1 dataset and the ‘Dogs vs. Cats’2 dataset
from kaggle. The parameters for the model are described in
the subsection below. The dataset used as an input is used as
an RGB value of 3 channels. Scale from 0 ∼ 255 to −1 ∼ 1.
For Width and Height, the image of the CIFAR-10 dataset is
32 by 32, but the Dogs vs. Cats dataset is resized to 64 by 64
and 128 by 128. This changes the parameters of the input of
the discriminator and the input/output of the constructor. For

1https://www.cs.toronto.edu/ kriz/cifar.html
2https://www.kaggle.com/c/dogs-vs-cats

394978-1-7281-6476-2/21/$31.00 ©2021 IEEE ICUFN 2021

common active functions, LeakyReLU is used on all layers
except for output. LeakyReLU uses features that are unaffected
together by a magnitude of 0.2, to influence the learning of
the model.

A. Discriminator

Fig. 1 shows the layer of the discriminator used in this paper.
The discriminator has four layers of convolutional layers. Use
3x3 filter and same padding for all convolutional layers. The
number of filters is set to 64, 128, 128, and 256, respectively.
Use stride 1 for the first convolutional layer and 2 for the rest
of the layers. In the Fully connected layer, dropout is set to
0.4 to prevent overfitting. In the final output layer, use sigmoid
to make a value between 0 and 1 to determine the fake/real.

Fig. 1: Hyperparameters of Discriminator.

B. Generator

Fig. 2 shows the layer of the 64 by 64 image generator.
The number of input nodes is typically determined by the
output shape of the convolutional layer of the discriminator.
The output shape of the convolutional layer used in this paper
is 256 x 8 x 8. Therefore, the nodes to which noise is input
total 16,3843.

The Upsampling process is the opposite of the convolutional
layer. First, noise is entered by node in the dense layer. It is
output via an active function (e.g., LeakyReLU), which makes
it an 8 x 8 x 256 feature map(i.e., This is the process of
creating a feature map over the last filter in the convolutional
layer). Using the feature map generated, upsampling to 16 x
16 x 128. Repeat this process to finally make a feature map
of 64 x 64 x 128 into an image sample of 64 x 64 x 3.

3In the 128 by 128 model used together in this paper, the output shape is
256 x 16 x 16. Thus, the number of input nodes for 128 by 128 generator
models is 65,536.

Fig. 2: Hyperparameters of Generator.

III. LEARNING PROCESS

The learning process of the eXplainable GAN model fol-
lows the learning process of the existing GAN. Fake/Real is
determined by using 50% of the fake images and real images
created by the uneducated generator. However, overfitting of
the discriminator can occur here. Fig. 3 illustrates the results
of performing DCGAN using the CIFAR-10 dataset and the
images created. The described image can be seen active in all
areas of the entered image.

Fig. 3: Results describing the discriminator of DCGAN learned
by the CAFIR-10 dataset.

Given that the entire area of the image was determined
from the described results, the model may not have been
determined using a particular area of the image. The fact
that the discriminator judged the entire image means that it
is too biased towards the learning data. Therefore, any image
generated by the constructor activates all areas and produces
results. In addition, the smaller the size of the image, the more
active the entire image is in the region described.

395

Fig. 4: Learning process of eXplainable OA-GAN.

Algorithm 1 pseudo-code of eXplainable OA-GAN

Input: Discriminator D
Input: Generator G
Input: Iteration
Input: Batch m
Input: (# of dataset)/Batch Step
Output: Trained models D and G,

Explained image with LIME
1: Initialization Model D(x) and G(x)
2: for i from Iteration do
3: for s from Step do
4: Predict data

• Real images X ∈ {x1, x2, ...xm}
• Fake images Z ∈ {z1, z2, ...zm}

5: if (s < Step
2) then

6: Update model D up to half of Step.
∇θd

1
m

∑m
j=1 log(D(xj)) + log(1−D(G(zi)))

7: else
8: Set the average of the two losses (D(X), D(Z))

of Model D to Threshold
Threshold = log(D(X))+log(D(Z))

2
9: if Threshold > 0.5 then

10: ∇θd
1
m

∑m
j=1 log(D(xj)) + log(1−D(G(zj)))

11: else
12: If the Threshold value is less than 0.5, pass the

update of D to prevent overfitting.
13: end if
14: end if

∇θg
1
m

∑m
j=1 log(1−D(G(zj)))

15: end for
16: end for

In this paper, we propose a method for controlling the
process in which the discriminator proceeds with learning
using a value called threshold. The threshold used here uses
fake images and real images as the average of loss predicted
by the discriminator, respectively. The optimization method
used in GAN is to converge to 1/2 by Equation (1).

D∗(x) =
pdata(x)

pdata(x) + pg(x)
� 1

2
(1)

It can be set up using the results described to not reflect results
that deviate significantly from this approximation.

Fig. 4 and Algorithm 1 are illustrations and pseudo-codes
to illustrate the methods proposed in this paper. Inputs in
Algorithm 1 use initialized values. First, in the case of the
model, the untrained discriminator D and generator G are
input. Iteration means the total number of epochs to learn.
Batch m represents the number of datasets to be trained at
once in each epoch. A step is a value obtained by dividing the
total number of datasets by batch m, and training is performed
as much as the corresponding step in one epoch. As outputs,
there are the trained model discriminator D and generator G,
and the explained image using LIME is output.

The key parts of the proposed method are (a), (b) in Fig.
4 and line 8, 9 in Algorithm 1. Step/2 of each itemization
follows the general GAN mechanism. Subsequently, the gen-
erated model is described using LIME as shown in Fig. 4(a).
If the described image is determined to be overfitting, the
threshold value is set through the procedure Fig. 4(b). This
value is calculated as shown in line 8 of algorithm 1 and is
used to prevent overfitting of the discriminator.

In the next learning, it proceeds through the process of line
8 and 9 of Algorithm 1. Line 9 in algorithm 1 allows learning
only when the threshold value is greater than 0.5. The value of
0.5 is a value reflected based on Equation(1). When it becomes
less than 1/2 of the optimized value, it acts as a threshold not
to be reflected in learning.

IV. SIMULATION RESULT

The learning process in this paper is conducted in the same
environment as Table 1.

Fig. 5 is the result of learning by specifying 1000 for each
image size. Fig. 5-(a) was the result of learning using 64 by

TABLE I: Learning environment

Category Server Desktop
CPU - AMD Ryzen7 3700X
RAM for CPU - 32 GBytes
GPU TESLA T4 GeForce 1660 SUPER
RAM for GPU 16 GBytes 6 GBytes

396

Fig. 5: Results from typical DCGAN learning processes.

64 images, which took approximately 24 hours to learn from
the server. The smaller the image, the more likely it is to
overfit the learning process. The 64 by 64 image shows that
all regions are active in the described image, while the 128
by 128 image shows only regions that have a specific impact
are active.

Fig. 6: Learning Results for 64 by 64 Images.

Fig. 6 shows the illustrated results of 64 by 64 images.
Models learned from 64 by 64 images can be seen that the
discriminator is overfitted with the learning data. Adjusting
the threshold also allows the discriminator to judge the
results by looking at all areas of the image. Even if we try
to oversampling such a small image using GAN, it is hard
to expect a new image. It seems that a slightly distorted and
distorted image can be created.

Fig. 7 shows the results of describing 128 by 128 images.
Compared with 64 by 64 images, we can see that the active
region is somewhat specific. When the GAN model is de-
scribed in this way, it can be seen that the area in which the

Fig. 7: Learning Results for 128 by 128 Images.

discriminator is based on a large size image rather than a small
size image becomes clear.

In the Real image, when the threshold is None, you can see
that the results include negative areas (i.e., red area). However,
at 0.5, the same area is shown, but the negative area is not
included. Fig. 7(b) shows the areas that can be estimated with
eyes and nose in the fake image, and the results described in
the fake image are as follows:

• None: Overfitting the learning data does not reflect the
estimated areas of the eyes and nose in the results.

• 0.3: It finds areas that can be estimated with eyes and
nose, but is used negatively for results.

• 0.5: It can be seen that the estimated areas of the eye and
nose have a meaningful effect on the results.

• 0.7: Learning has become too rough to find the estimated
area.

The above results suggest that 0.5 is appropriate for
the value of the threshold, which can limit the learning of
discriminator.

Fig. 3, 6, and 7 show that the larger the size, the clearer
the basis for the features to judge. The discriminator tries to
find a specific area as a basis for judgement, but the smaller
the image, the more overlapping the area. If that happens, all
areas of the image will have to be used as a basis. However,
the larger the image, the more specific the area can be found.

V. CONCLUSION

In this paper, we propose a method to describe the GAN
model with a total of three kinds of simulations. As mentioned
in the previous section, smaller images can result in overfitting
of discriminators that allow the model to view and judge all
areas.

Therefore, the simulation results are described as 64 by
64 images and 128 by 128 images. When the model is

397

described using LIME, it can be viewed as overfitting if it is
explained by all areas of the output result image. Overfitting of
discriminators is a problem in GAN models. When overfitted
to the discriminator, all images generated by the generators are
close to the training image. This problem can be a problem
for GAN of ‘generated similar image’.

The future work of this study is to propose a quantified
scale to the user by quantifying the data described as LIME. In
general, learning must be terminated in order to determine the
extent to which the model has been learned when progressing
learning. Subsequently, only the resulting images should be
checked using xAI methods such as LIME et al.

However, there is a problem that users can accept
subjectively. It is the future work of this study that allows this
problem to be reflected in learning with quantified values.

ACKNOWLEDGMENT

This work was supported by Institute for Information
& communications Technology Planning & Evaluation(IITP)
grant funded by the Korea government(MSIT) (No. 2021-0-
00990, Research on Advanced Core Technologies for WLAN
based on eXplainable AI) and the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2019R1F1A1060742, Big Data Analysis and
Development of Security Protocol for Massive IoT Security
from Cloud to Edge Computing).

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, and Y. Bengio, “Generative adversarial nets,” In Advances in
Neural Information Processing Systems, pp. 2672–2680, 2014.

[2] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[3] J. Kim, and H. Park. “Reduced CNN Model for Face Image Detection
with GAN Oversampling,” International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing. Springer, Cham,
2021.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?”
Explaining the predictions of any classifier,” Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining. 2016.

[5] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized
feature attribution for tree ensembles,” arXiv preprint arXiv:1802.03888,
2018.

[6] V. Nagisetty, L. Graves, J. Scott, and V. Ganesh, “xAI-GAN: Enhancing
Generative Adversarial Networks via Explainable AI Systems,” arXiv
preprint arXiv:2002.10438, 2020.

398

