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Abstract— Vision, Radar, and LiDAR sensors are widely used for 
autonomous vehicle perception technology. Especially object 
detection and classification are primarily dependent on vision sensors. 
However, under poor lighting conditions, dazzling sunlight, or bad 
weathers an object might be difficult to be identified with general 
vision sensors. In this paper, we propose a sensor fusion system with a 
thermal infrared camera and LiDAR sensor that can reliably detect and 
identify objects even in environments where visibility is poor, such as 
in severe glare and fog or smoke. The proposed method obtains 
intrinsic parameters by calibrating the thermal infrared camera and 
LiDAR sensor. Extrinsic calibration algorithm between two sensors is 
made to obtain the extrinsic parameters (rotation and translation matrix) 
using 3D calibration targets. This system and proposed algorithm show 
that it can reliably detect and identify objects even in hard visibility 
environments, such as in severe glare due to direct sunlight or 
headlights or in low visibility environments, such as in severe fog or 
smoke. 

Keywords—Calibration; Autonomous Vehicles; Sensor fusion; 
LiDAR; Thermal Infrared Camera; 

I.  INTRODUCTION 
Autonomous driving technology can be divided into 

perception, judgment, and control. Among them, perceiving the 
surrounding environment of an autonomous vehicle is the first 
step and a key determinant of performance. This is because the 
goal of perception is to detect the obstacles and provide the 
driving path in various driving environments. Perception 
technology is divided into communication type and sensor type. 
The communication type recognizes the surrounding situation 
through communication with the outside using communication 
equipment installed in the vehicle. The communication method 
between the transmission equipment inside the vehicle and the 
receiving equipment of the vehicle and a specific object is called 
Vehicle to Everything (V2X). Although the V2X 
communication has a longer range than the sensor type, it is 
vulnerable to hacking and its performance varies depending on 
the surrounding environment or vehicle condition. 

The sensor type uses sensors mounted on autonomous 
vehicles to detect nearby objects or obstacles. However, each 
sensor has its advantages and disadvantages, and it only works 

in a limited environment or within the sensing range of the 
sensor. The perception sensors for traditional autonomous 
vehicles are Vision, Radar, and LiDAR. 

LiDAR is a sensor that investigates optical signals in a 
certain way and analyzes light energy reflected from obstacles 
and acquires three-dimensional spatial information around 
autonomous vehicles. Thermal infrared cameras can perform 
even in low visibility and high contrast environments such as 
night, shadow, sunset, and sunrise, and low visibility such as 
direct sunlight or headlights, fog or smoke. Currently, 
autonomous vehicle perception research uses a vision sensor to 
detect objects. As shown in Fig. 1. in poor lighting conditions, 
dazzling sunlight, bad weather an object cannot be identified 
with a general Visual Camera. However, the thermal infrared 
camera can reliably detect objects even in this situation. 

Information from a single sensor alone cannot guarantee the 
reliability of perception in complex autonomous vehicle 
surroundings. Therefore, autonomous vehicles are equipped 
with several sensors to improve perception rates in their 
surroundings. To combine information from different sensors 
into a common coordinate frame, we need to know the relative 
positions and directions between sensors. These parameters can 
be obtained by extrinsic calibration. This paper focuses on direct 
extrinsic calibration between LiDAR and thermal infrared 
camera. 

 
Fig. 1. Object detection in dazzling sunlight (top) and object detection in 
dark lighting environments (bottom). 
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II. METHOD 
The relative position and orientation of the multiple sensors 

mounted on autonomous vehicles are unknown. This can be 
represented by the transformation matrix 𝑇𝑇. For example, the 
transformation matrix 𝑇𝑇𝑙𝑙

𝑡𝑡  from the LiDAR frame {𝐿𝐿}  to the 
thermal infrared camera frame {𝑇𝑇} can be expressed as shown in 
(1). 

𝑇𝑇𝑙𝑙
𝑡𝑡 = [

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 𝑡𝑡𝑥𝑥
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 𝑡𝑡𝑦𝑦
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 𝑡𝑡𝑧𝑧
0 0 0 1

]                            (1) 

 

As shown in Fig. 2a, LiDAR point 𝑃𝑃𝑙𝑙 = (𝑥𝑥𝑙𝑙, 𝑦𝑦𝑙𝑙, 𝑧𝑧𝑙𝑙)𝑇𝑇 in {𝐿𝐿} is 
given, then the point in the thermal infrared camera frame {𝑇𝑇}, 
𝑃𝑃𝑡𝑡 = (𝑋𝑋𝑡𝑡, 𝑌𝑌𝑡𝑡, 𝑍𝑍𝑡𝑡)𝑇𝑇, can be obtained by (2). 

 

𝑃𝑃𝑡𝑡 = 𝑅𝑅𝑙𝑙
𝑡𝑡𝑃𝑃𝑙𝑙 + 𝑇𝑇𝑙𝑙;

𝑡𝑡                                     (2)   
  

A. Thermal infrared camera calibration 
To calibration the LiDAR and thermal infrared camera, first, 

the intrinsic parameters of the thermal infrared camera must be 
obtained. In this paper, we used the Zhang' calibration method 
implemented in OpenCV [1]. Zhang calibration algorithm uses 
a check pattern. It is convenient, easy to use, and provides 
accurate calibration results. The circle pattern is more accurate 
than the check pattern because the thermal infrared camera 

cannot extract the exact shape of the 3D calibration targets 
compared to the visual camera. In order to utilize the 
characteristics of the thermal infrared camera, the 3D calibration 
targets was heated as shown in Fig. 3a. Heated target can be 
more accurately extracted from thermal images. The extracted 
circular feature points are shown in Fig. 3b. 

Since the 3D calibration targets is a flat board, 𝑍𝑍 = 0 . 
Therefore, the projected image pixels and 3D calibration targets 
are as shown in (3). Finally, it can be summarized by (4). 𝐾𝐾 is 
the camera intrinsic matrix, and 𝑅𝑅|𝑡𝑡  is the rotation and 
tranlsation matrix from the world frame to the pixel frame. 

 

𝑠𝑠 [
𝑢𝑢
𝑣𝑣
1

] = [
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

] [
𝑟𝑟11
𝑟𝑟21
𝑟𝑟31

 
𝑟𝑟12
𝑟𝑟22
𝑟𝑟32

 
𝑟𝑟13
𝑟𝑟23
𝑟𝑟33

 
𝑡𝑡1
𝑡𝑡2
𝑡𝑡3

] [
𝑋𝑋
𝑌𝑌
𝑍𝑍
1

]            (3) 

= 𝐾𝐾[𝑅𝑅|𝑡𝑡] [
𝑋𝑋
𝑌𝑌
𝑍𝑍
1

]                                                   (4)   

 
Cheap small cameras generate significant image distortion. 

Major distortions include radiation distortion and tangential 
distortion. Radial distortion causes the image to bend. This 
phenomenon gets worse as we move away from the center of the 
image. Radial distortion can be solved using (5). 

Tangential distortion occurs because the camera lens is not 
perfectly parallel to the image plane. Therefore, some areas of 
the image may appear closer than expected. Tangential 
distortion can be solved by using (6). 

 

𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑥𝑥(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 +  𝑘𝑘3𝑟𝑟6)  
    𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑦𝑦(1 +  𝑘𝑘1𝑟𝑟2 +  𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6)            (5)   

 
𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑥𝑥 + [2𝑝𝑝1𝑥𝑥𝑦𝑦 + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥2)  
𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑 = 𝑦𝑦 + [𝑝𝑝1(𝑟𝑟2 + 2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑦𝑦]            (6)   

 

 
Fig. 2. Sensor frame and thermal infrared camera and extrinsic calibration method of LiDAR sensor. (a) The x-axis, y-axis, z-axis of the sensor frames are 
shown in red, green and blue color. (b) LiDAR point 𝑃𝑃𝑙𝑙 = {𝑋𝑋𝑙𝑙𝑌𝑌𝑙𝑙𝑍𝑍𝑙𝑙}𝑇𝑇 in the LiDAR frame {𝐿𝐿} can be transformed to  𝑃𝑃𝑡𝑡 = (𝑋𝑋𝑡𝑡, 𝑌𝑌𝑡𝑡, 𝑍𝑍𝑡𝑡)𝑇𝑇 in the thermal infrared 
camera frame {𝑇𝑇} by the transformation matrix 𝑇𝑇𝑙𝑙

𝑡𝑡. 

i 

 

 
Fig. 3. Thermal infrared camera internal calibration results. (a) Thermal 
image original. (b) Feature point extraction results for intrinsic calibration. 
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In this paper, correction was performed with 50 test images, 
and finally, the distortion coefficient (7), the focal length (𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦) 
and optical center (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦) were obtained (8). 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝑓𝑓𝑓𝑓𝐷𝐷𝑐𝑐𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷 = (𝑘𝑘1, 𝑘𝑘2, 𝑝𝑝1, 𝑝𝑝2, 𝑘𝑘3, )          (7) 
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝑐𝑐 𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚 = [
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

]                            (8) 

B. Extrinsic calibration between thermal infrared camera and 
LiDAR 
In order to use the information of two different sensors as a 

single fusion system, extrinsic calibration is required to combine 
the coordinate between the sensors into one coordinate system. 
There are several ways to integrate LiDAR and vision sensors. 
The conventional method is to obtain the matching point of two 
sensors using a board [2-5]. Recently, a method of extracting and 
fusing feature values has been studied [6]. There is no way to 
directly calibrate LiDAR and thermal infrared camera sensors. 
Zhang obtains the transformation matrix between the visual 
camera and LiDAR and then the transformation matrix between 
the thermal infrared camera and the visual camera. Finally, the 
extrinsic parameters between LiDAR and thermal infrared 
camera were calculated by multiplying the above two matrices 
[7]. 

In this paper, we propose algorithms that can be directly 
externally calibrated from thermal infrared cameras and LiDAR 
sensors. To extract the corresponding point of the two sensors, 
we first analyze the brightness distribution and saturation of the 
entire Thermal Image using a histogram, a technique for 
analyzing the frequency of image brightness values in thermal 
infrared cameras. As shown in Fig. 4, the 3D calibration targets 
is separated by a value corresponding to the histogram 
brightness value of the top 𝐷𝐷%. 𝐷𝐷 is the distribution ratio of the 

upper brightness values. Noise is eliminated from thermal image 
𝐷𝐷(𝑚𝑚, 𝑦𝑦) using the histogram top 𝐷𝐷% value. 

 

𝐷𝐷(𝑚𝑚, 𝑦𝑦) = { 0 𝐷𝐷𝑓𝑓   𝐷𝐷(𝑚𝑚, 𝑦𝑦) > 𝐷𝐷ℎ𝐷𝐷𝑐𝑐𝐷𝐷ℎ
 𝐷𝐷 𝐷𝐷𝐷𝐷ℎ𝑐𝑐𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑐𝑐                       }               (9)   

 

From the extracted 3D calibration targets, points 
𝐷𝐷𝑐𝑐𝑐𝑐𝑚𝑚(𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦) (10) and 𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷(𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦)  (11) are extracted by 
comparing pixel values in the thermal image 𝐷𝐷(𝑚𝑚, 𝑦𝑦). 

 

𝐷𝐷𝑐𝑐𝑐𝑐𝑚𝑚(𝑚𝑚, 𝑦𝑦) = {𝑐𝑐𝑐𝑐𝑚𝑚 (𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦) 𝑐𝑐𝑐𝑐𝑚𝑚(𝑚𝑚, 𝑦𝑦) <  𝐷𝐷(𝑚𝑚, 𝑦𝑦)
𝑐𝑐𝑐𝑐𝑚𝑚(𝑚𝑚, 𝑦𝑦) 𝐷𝐷𝐷𝐷ℎ𝑐𝑐𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑐𝑐 }   (10) 

 

𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷(𝑚𝑚, 𝑦𝑦) = {𝑐𝑐𝐷𝐷𝐷𝐷 (𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦) 𝑐𝑐𝐷𝐷𝐷𝐷(𝑚𝑚, 𝑦𝑦) >  𝐷𝐷(𝑚𝑚, 𝑦𝑦)
𝑐𝑐𝐷𝐷𝐷𝐷(𝑚𝑚, 𝑦𝑦) 𝐷𝐷𝐷𝐷ℎ𝑐𝑐𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑐𝑐 }    (11)  

As shown in Fig 5a, the 3D calibration targets is extracted 
from the LiDAR point cloud using the RANSAC plane fitting 
algorithm. Extract 𝑙𝑙𝑐𝑐𝑐𝑐𝑚𝑚(𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦) (12) and 𝑙𝑙𝑐𝑐𝐷𝐷𝐷𝐷(𝐷𝐷𝑥𝑥, 𝐷𝐷𝑦𝑦)  (13) 
points from the extracted 3D calibration targets 𝑙𝑙(𝑚𝑚, 𝑦𝑦, 𝑧𝑧). 

 

𝑙𝑙𝑐𝑐𝑐𝑐𝑚𝑚(𝑚𝑚, 𝑦𝑦, 𝑧𝑧) = {𝑐𝑐𝑐𝑐𝑚𝑚 (𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦) 𝑐𝑐𝑐𝑐𝑚𝑚(𝑚𝑚, 𝑦𝑦) < 𝑙𝑙(𝑚𝑚, 𝑦𝑦)
𝑐𝑐𝑐𝑐𝑚𝑚(𝑚𝑚, 𝑦𝑦) 𝐷𝐷𝐷𝐷ℎ𝑐𝑐𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑐𝑐 }   (12) 

 

𝑙𝑙𝑐𝑐𝐷𝐷𝐷𝐷(𝑚𝑚, 𝑦𝑦, 𝑧𝑧) = {𝑐𝑐𝐷𝐷𝐷𝐷 (𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦) 𝑐𝑐𝐷𝐷𝐷𝐷(𝑚𝑚, 𝑦𝑦) > 𝑙𝑙(𝑚𝑚, 𝑦𝑦)
𝑐𝑐𝐷𝐷𝐷𝐷(𝑚𝑚, 𝑦𝑦) 𝐷𝐷𝐷𝐷ℎ𝑐𝑐𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑐𝑐 }   (13) 

 
All pairs of the corresponding points between the thermal 

infrared camera and the LIDAR were obtained to estimate the 
extrinsic calibration. To find the external parameters between 
the thermal infrared camera and LiDAR, we used OpenCV 
solvePnP algorithm (14) 

𝐷𝐷 [
𝐷𝐷𝑥𝑥
𝐷𝐷𝑦𝑦
1

] = [
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

] [
𝐷𝐷11 𝐷𝐷12 𝐷𝐷13 𝐷𝐷𝑥𝑥
𝐷𝐷21 𝐷𝐷22 𝐷𝐷23 𝐷𝐷𝑦𝑦
𝐷𝐷31 𝐷𝐷32 𝐷𝐷33 𝐷𝐷𝑧𝑧
0 0 0 1

] [
𝑙𝑙𝑥𝑥
𝑙𝑙𝑦𝑦
𝑙𝑙𝑧𝑧
1

]     (14) 

 
Fig. 4. Thermal image threshold processing using histogram (a) Original 
thermal image (b) Top 10% result.  (c) Top 50% result. (d) Top 70% result. 

 

 
Fig. 5. LiDAR point extraction result (a)Extract 3D calibration targets. (b) 
Results of feature point extraction from the 3D calibration targets 
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III. EXPERIMENTAL RESULT 

A. Experimental platform 
As shown in Fig. 6, the sensor was composed of COX CG-

640 thermal infrared camera (resolution: 640 x 480) and 
SOSLAB SL-2 LiDAR. The sensor is mounted on an 
autonomous vehicle. All algorithms run on desktop and use 
NVIDIA TITAN RTX D6 24GB, Intel® Core i9 9900k CPU @ 
3.60GHz, 32GB RAM, Ubuntu 18.04, and ROS melodic. 

Since the ground truth for the relative pose between the two 
sensors is difficult to obtain, the external parameters obtained 
cannot be compared with the ground truth. However, it is 
possible to evaluate the reprojection error by reprojecting from 
the LiDAR frame {𝐿𝐿} to the thermal infrared camera frame {𝑇𝑇}. 
In addition, the thermal infrared camera frame {𝑇𝑇}  can be 
visually evaluated by reconstructing it as a thermal point cloud. 

B. Thermal point cloud 
To visually evaluate the external parameters between the 

thermal infrared camera and LiDAR, the LiDAR point 𝑃𝑃𝑙𝑙  is 
converted into 𝑃𝑃𝑡𝑡 = {𝑋𝑋𝑡𝑡, 𝑌𝑌𝑡𝑡, 𝑍𝑍𝑡𝑡}𝑡𝑡 in the thermal infrared camera 
frame {𝑇𝑇}  (15). 𝑃𝑃𝑡𝑡  is projected onto the thermal image 𝑝𝑝𝑡𝑡 =
 (𝑥𝑥𝑡𝑡, 𝑦𝑦𝑡𝑡)𝑇𝑇 , which is not distorted (16). The projected 𝑃𝑃𝑡𝑡  is 
shown in Fig. 7a. A temperature value is assigned to the 
projected 𝑃𝑃𝑡𝑡. The projected point 𝑃𝑃𝑡𝑡 can be reprojected to a point 
having a temperature value (17). The results are shown in Fig. 
7b. 

𝑃𝑃𝑡𝑡 = 𝑅𝑅𝑙𝑙
𝑡𝑡𝑃𝑃𝑙𝑙 + 𝑇𝑇𝑙𝑙;

𝑡𝑡                                   (15)  
 

[𝑃𝑃𝑡𝑡
1 ] = 1

𝑍𝑍𝑡𝑡
𝐾𝐾𝑡𝑡𝑃𝑃𝑡𝑡                                     (16) 

𝑃𝑃𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑙𝑙 = 𝑍𝑍𝑡𝑡𝐾𝐾𝑡𝑡
−1 [𝑃𝑃𝑡𝑡

1 ]                             (17) 
 

C. Object detection using YOLOv4 
For the object detection in an autonomous vehicle, research 

on learning and perception based on a lot of data is being 
activated. In this paper, when autonomous vehicles travel on the 
road, objects that can be judged as obstacles, vehicles and 
pedestrian are classified and detected. To detect the objects, 
YOLOv4 one of the Convolutional Neural Network (CNN) 
models, was applied [8]. YOLOv4 is a representative algorithm 
of one-stage detector and has the advantage of faster speed 
because localization and classification are performed at the same 

time. The object detection result is shown in Fig 8. 

IV. CONCLUSION 
In this paper, we propose an extrinsic calibration method to 

obtain external parameters between the thermal infrared camera 
and LiDAR. First, the proposed method is calibrated to obtain 
the intrinsic parameters of the thermal infrared camera. Second, 
in order to calibrate the thermal infrared camera and LiDAR, the 
histogram is analyzed from the 3D calibration targets in the 
thermal image, and noise is removed by applying an image 
threshold to the histogram. Points are extracted by comparing 
pixel values from the extracted 3D calibration targets. LiDAR 
extracts the 3D calibration targets through RANSAC plane 
fitting and compares the coordinate values of the points to 
extract the corresponding point. The two sensors are externally 
calibrated using the extracted corresponding points. Through 
experiments, the effectiveness of the above method has been 
proved. Through extrinsic calibration of thermal infrared 
cameras and LiDAR, autonomous vehicles can reliably detect 
objects even in situations where there is a lot of glare due to 
direct sunlight or headlights, and in environments where 
visibility is poor such as fog or smoke. In the future, 3D Object 
Detection system research will be conducted using thermal point 
cloud. 

 

 
Fig. 6. Autonomous Vehicle Thermal Infrared Camera (COX CG-640), 
LiDAR (SOSLAB SL-2) demonstrating the proposed algorithm 

 
Fig. 7. (a) The result of projecting the LiDAR point as a thermal image. 
(b) Reconstructed thermal points 

 
Fig. 8. Results of object detected in various lighting environments. (a) Car, 
pedestrian detection in the glare of sunlight. (b) Car, pedestrian detection 
in the dark light environment. 
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