
Mesh-Clustering-Based Radio Maps Construction
for Autonomous Distributed Networks

Keita Katagiri† and Takeo Fujii†
† Advanced Wireless and Communication Research Center (AWCC), The University of Electro-Communications

1–5–1 Chofugaoka, Chofu, Tokyo 182–8585, Japan
Email: {katagiri, fujii}@awcc.uec.ac.jp

Abstract—We have proposed a method of the radio map
construction using clustering algorithm in our conventional
work. The method enables us to accurately predict the radio
environment while reducing the registered data size. However,
this clustering algorithm has been only applied to the wireless
system with fixed transmitter location. Thus, this paper considers
the radio maps construction based on the clustering for the au-
tonomous distributed networks that both transmitter and receiver
dynamically move. The proposed method classifies the similar
average received signal power samples using k-means++. The
emulation results clarify that the proposed method can estimate
the radio environment with high accuracy while reducing the
registered data size compared to the conventional radio map.

Index Terms—Radio map, clustering, radio propagation, au-
tonomous distributed networks

I. INTRODUCTION

Nowadays, a radio map attracts attention as an enabler
for accurately estimating the radio environment characteris-
tics [1]–[4]. The radio map stores statistical information of
the radio environment, such as an available spectrum and an
average received signal power, in each location. Distributed
mobile terminals observe the radio environment and report the
measured datasets to a cloud server. Subsequently, the cloud
server creates the radio map by statistically processing these
datasets in each mesh, which is calculated based on the latitude
and longitude. This construction method is well known as the
crowdsourcing [5], [6]. The method allows us to construct the
radio map with low observation costs and short times.

Here, it is necessary to use the smaller mesh size than a
correlation distance of the shadowing component to generate
the precise radio map. For instance, this correlation distance is
empirically around 20 [m] in the urban area [7]. Thus, the 10m-
scale mesh is often utilized in the radio map construction [8]–
[10]. However, the registered data size may be huge according
to a communication range since the cloud server manages
the radio environment information in each mesh. The trade-
off between the mesh size and estimation accuracy of the
radio environment is an important topic for the radio map
construction.

We have proposed the clustering-based radio map construc-
tion methods [11], [12] to solve the trade-off by considering
the spatial correlation of the shadowing [7]. In these methods,
similar received signal power samples are unified into a
representative value based on clustering algorithms, such as the
k-means++ [13]. Our results have clarified that the clustering

algorithms enable us to accurately predict the average received
signal power in each mesh while reducing the registered data
size of the cloud server. However, these works have only
considered the wireless system with fixed transmitter location.

Meanwhile, autonomous distributed networks, such as
vehicle-to-vehicle (V2V) communications [14], [15] and
device-to-device communication [16], are actively discussed.
Since both transmitter and receiver dynamically move in these
systems, the communication reliability may be poorer than the
wireless system with fixed transmitter location. If we create
radio maps even in the autonomous distributed networks, it
is necessary to accumulate radio environment information in
each transmission / reception position [17]. As a result, the
registered data size is very enormous.

Motivated by this problem, we apply a clustering algorithm
to the construction of the radio maps for autonomous dis-
tributed networks. The proposed method classifies the similar
average received signal power samples in each transmis-
sion / reception position using the k-means++. Subsequently,
a representative value of the average received signal power is
calculated in each cluster. The emulation results clarify that
the proposed method can estimate the radio environment with
high accuracy while reducing the registered data size compared
to the conventional radio map.

The remainder of this paper is organized as follows. Sect. II
describes the overview of the radio maps for the autonomous
distributed networks. Then, the proposed method is explained
in Sect. III. After Sect. IV shows the measurement datasets, the
emulation results are described in Sect. V. Finally, we conclude
this paper in Sect. VI.

II. RADIO MAPS FOR AUTONOMOUS DISTRIBUTED
NETWORKS

A. System Model

Fig. 1 presents the overview of the conventional radio maps
for the autonomous distributed networks. We consider that S
transmitters and D receivers exist and dynamically move in
the communication area. Each transmitter sends the signal,
including own transmitter ID and transmission position to
D receivers. After each receiver records the received signal
power, reception position, center frequency, and receiver ID
in addition to the transmitted information, these datasets
are uploaded to the cloud server. The cloud server divides
the communication area into two-dimensional meshes and
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Fig. 1. Overview of the radio maps for autonomous distributed networks.

Tx mesh code Rx mesh code Average received signal power [dBm] 

xxxx-xx-xx-xx aaaa-aa-aa-aa -90.0123456789

yyyy-yy-yy-yy bbbb-bb-bb-bb -84.2345677890

zzzz-zz-zz-zz cccc-cc-cc-cc -78.3456789012

(a) Conventional radio map.

Cluster label Representative value [dBm] 

0 -90.0

1 -84.0

2 -78.0

��������������������������

Tx mesh code Rx mesh code Cluster label

xxxx-xx-xx-xx aaaa-aa-aa-aa 0

yyyy-yy-yy-yy bbbb-bb-bb-bb 1

zzzz-zz-zz-zz cccc-cc-cc-cc 2

(b) Proposed method.

Fig. 2. Registration contents for radio map.

statistically processes the reported datasets in each m-th
transmission / reception mesh pair (m = 1, · · · ,M), here, M
is the number of transmission / reception mesh pairs. As the
statistical data, the cloud server constructs the radio map in
each transmission mesh; that is, S maps are stored. Here,
we assume that the radio map expresses the average received
signal power in each reception mesh.

A transmitter accesses to the cloud server for obtaining the
radio map that corresponds to own transmission position. The
radio map enables the transmitter to accurately predict the path
loss and shadowing in each location, and appropriately design
the communication parameters, such as the modulation format.

B. Problem and Solution

The registration contents for the radio map are illustrated
in Fig. 2. As shown in Fig. 2(a), the conventional radio map
stores the average received signal power in each transmis-
sion / reception mesh. Here, each mesh is identified using the
mesh code; that is, the cloud server assigns the unique string
format in each mesh based on the latitude and longitude
information [12]. However, the registered data size may be
huge since the number of meshes increases according to the
range of the communication area and mesh size.

In order to solve this problem, the proposed method unifies
the similar average values to the representative value using the
clustering algorithm. Subsequently, the two tables; the mesh
table and the clustering table, are linked using the clustering
label to manage the transmission / reception mesh codes and
the representative value. The proposed method can reduce the
registered data size if there are many similar average values.

III. PROPOSED METHOD

A. Selection of Clustering Algorithm
It is necessary to choose the something clustering algorithm

for unifying the similar average values. Here, it is well known
that the spatial correlation of the shadowing component expo-
nentially decays against the sum of the movement distance
for both transmitter and receiver even in the autonomous
distributed networks [18]. In other words, the average received
signal power may be similar in vicinity meshes. Motivated by
this viewpoint, we use the k-means++ [19] for the clustering
algorithm. This method can easily classify the input data with
high accuracy if several data are collectively distributed in the
vicinity area.

Although the Gaussian mixture model (GMM) is often uti-
lized as the soft clustering, this method assumes that the input
data follows the Gaussian distribution. In the real environment,
the average received signal power may not follow the log-
normal distribution owing to the site-specific fluctuation of
the radio propagation. Thus, we do not use GMM.

B. Definition of Input Data
To utilize the k-means++, an input data vector for the s-th

transmission mesh (s = 1, · · · , S) and the d-th reception mesh
(d = 1, · · · , D) of the m-th mesh pair is defined as follows,

zs,d,m = (xs,m, ys,m, xd,m, yd,m, p̄s,d,m), (1)

where (xs,m, ys,m) and (xd,m, yd,m) are the coordinate values
of the s-th transmission mesh and the d-th reception mesh of
the m-th mesh pair, respectively. p̄s,d,m [dBm] is the average
received signal power in the d-th reception mesh based on the
s-th transmission mesh for the m-th mesh pair. Here, each
coordinate value is calculated by the mesh code [12].

The accuracy of the clustering may be poor since the scale
between the coordinate value and received signal power is
different. Hence, we standardize each input data and multiply
each data by weight before the clustering is performed. As the
standardization procedures, the mean and standard deviation
are first calculated for each input data. Then, the cloud server
subtracts the mean from each value and divides by the standard
deviation.

C. k-means++
k-means++ is a non-hierarchical clustering method that is

improved the k-means considering the initial cluster place-
ment. This method classifies the input data so that the follow-
ing evaluation function J is minimized:

J =
K∑

k=1

M∑
m=1

umkde(zs,d,m,µk), (2)
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TABLE I
MEASUREMENT PARAMETERS

Communication standard ARIB STD-T109 [20]
Center frequency [MHz] 760
Transmission power [dBm] 19.2
Modulation format QPSK/OFDM
The number of subcarriers 52
Communication header [byte] 61
Payload length [byte] 77
Noise floor [dBm] -96.0

where K is the number of clusters, umk is 1 if zs,d,m belongs
to the k-th cluster; otherwise, 0. µk is the centroid vector of
the k-th cluster and de(zs,d,m,µk) is an euclidean distance
between zs,d,m and µk.

The k-means++ determines each initial centroid as follows:

a). The data zs,d,m is randomly selected as the first centroid
µ1 from the M mesh pairs.

b). z′
s,d,m is determined as another centroid µk from the

M mesh pairs using the following probability,

min
1≤k≤K

de(z
′
s,d,m,µk)

∑M
m=1 min

1≤j≤K
de(zs,d,m,µj)

. (3)

c). b). is repeated while K centroids are chosen.

The cloud server classifies the average received signal power
samples into K clusters based on Eq. (2). Then, the repre-
sentative value is calculated for each cluster by averaging the
average received signal power samples having the same cluster
label. The cloud server registers the transmission / reception
mesh codes, cluster label k, and the representative value.

IV. MEASUREMENT DATASETS

We evaluate the effectiveness of the proposed method by
using the measurement datasets of the V2V communications in
the real environment [17]. The measurement was performed in
Chofu City and Mitaka City, typical suburban areas in Tokyo,
Japan over three days in January 2017. The three vehicles that
implemented an on-board unit traveled on the red line shown in
Fig. 3. The orange dotted line is the evaluation area to show the
example of the radio maps. In the measurement, the received
signal power, transmission / reception position, and IDs of both
transmitter and receiver were observed in each location. Here,
we obtained the position information and observation time by
using the Garmin GPS 18x, a USB-connected device. The
accuracy of the GPS is 95 [%] within 15 [m]. The commu-
nication standard is IEEE 802.11p-based method called ARIB
STD-T109, which is developed for 700 MHz band intelligent
transport systems by the Association Industries and Businesses
(ARIB) [20]. Table I is the measurement parameters. After the
measurement, we statistically processed the 2839076 datasets
using MySQL 5.7 and constructed radio maps for each 10m
transmission / reception mesh.
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Fig. 3. The measurement route.
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(a) True map.
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(b) w/o std. and weights.
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(c) w/ std. and w/o weights.
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(d) w/ std. and weights.

Fig. 4. Examples of radio maps.

V. EMULATION RESULTS

This section describes the emulation results. The weights
for (xs,m, ys,m), (xd,m, yd,m), and p̄s,d,m are 0.05, 0.05, and
0.9 in k-means++, respectively.

A. Example of Radio Maps

Fig. 4 presents an example of the radio maps in the eval-
uation area. In these maps, each color mesh is the average
received signal power when the transmitter is located in the
black mesh corresponds to the red square shown in Fig. 5.
Fig. 4(a) expresses the average received signal power in each
mesh without the clustering. The constructed radio maps using
k-means++ are depicted in Figs. 4(b), 4(c), and 4(d). Here, the
notation ’std.’ means the standardization for each input data.
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Fig. 5. The evaluation area.
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Fig. 6. The average RMSE characteristics.

These maps clarify that the k-means++ w/ std. and weights can
accurately classify the similar average values compared with
others. Meanwhile, Figs. 4(b) and 4(c) construct the radio maps
with poor accuracy since the centroid may not be appropriately
calculated.

B. Estimation Accuracy

Next, the root mean squared error (RMSE) is derived using
the following equation:

RMSE =

√√√√ 1

Ns,d

Ns,d∑
i=1

(Ps,d,i − P̄s,d)2 [dB], (4)

where Ps,d,i [dBm] is the i-th instantaneous received signal
power in the s-th transmission mesh and d-th reception mesh,
P̄s,d [dBm] and Ns,d are the estimated average received signal
power and the number of datasets in the s-th transmission
mesh and d-th reception mesh, respectively. Note that P̄s,d

corresponds to the representative value in the cluster to which
the s-th transmission mesh and d-th reception mesh belong.
We divided the 2839076 datasets into the three groups and
calculated the average RMSE based on the cross-validation.

TABLE II
REGISTRATION CONTENTS IN THE PROPOSED METHOD

(a) Mesh Table
Item Type Size [byte]

10m mesh code of a Tx mesh text 11
10m mesh code of a Rx mesh text 11

Cluster label k int 4
Total data size per mesh 26

(b) Clustering Table
Item Type Size [byte]

Cluster label k int 4
Average received signal power double 8

Total data size per cluster 12

(c) Single Table
Item Type Size [byte]

1st code of a Tx mesh text 5
1st code of a Rx mesh text 5

Total data size 10

TABLE III
REGISTRATION CONTENTS IN THE CONVENTIONAL RADIO MAP

(a) Mesh Table
Item Type Size [byte]

10m mesh code of a Tx mesh text 11
10m mesh code of a Rx mesh text 11
Average received signal power double 8

Total data size per mesh 30

(b) Single Table
Item Type Size [byte]

1st code of a Tx mesh text 5
1st code of a Rx mesh text 5

Total data size 10

The RMSE characteristics are shown in Fig. 6. Here, the
black dashed line means the estimation accuracy of the con-
ventional radio map; that is, the clustering is not performed.
It can be found that the RMSE of the k-means++ w/ std. and
weights is superior to the others. The others methods cannot
accurately predict the average received signal power because
of the inaccurate clustering.

C. The Registered Data Size

Finally, this subsection describes the registered data size
of the radio map. The registration contents of the proposed
method and conventional radio map are shown in Tables II
and III, respectively. The proposed method accumulates the
cluster label k in each mesh as shown in Table II(a). The
10m mesh code can be expressed as the 16 [byte] text type
based on reference [21]. Note that the data size of the 10m
mesh code per mesh is 11 [byte] because 1st mesh code is
the same value in Fig. 3. Hence, the 1st mesh code of each
transmission and reception is registered only 5 [byte] as shown
in Table II(c). To link the cluster label k and average received
signal power in the k-th cluster, we use Table II(b) as the
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Fig. 7. The registered data size.

clustering table. The proposed method creates K clusters with
different average received signal power; thus, Table II(b) is
registered for K clusters. Meanwhile, the conventional radio
map accumulates the average received signal power with each
10 m transmission / reception mesh as shown in Table III(a).
The 1st mesh code of each transmission and reception is
registered in Table III(b).

The registered data size of the proposed method R1 is
represented as follows,

R1 = (M × 26) + (K × 12) + 10 [byte]. (5)

Additionally, the registered data size of the conventional radio
map R2 is represented as follows,

R2 = M × 30 + 10 [byte]. (6)

As the calculation procedures, we first divide the 2839076
datasets into three groups. Subsequently, the two groups are
utilized as the statistical data to calculate the registered data
size. The average M is about 53000.

Fig. 7 shows the registered data size versus the number
of clusters. We can confirm that the proposed method can
notably reduce the registered data size compared with the
conventional radio map. The detailed reduction rate of the
registered data size is about 13.33 [%]. This result implies
that the similar average received signal power samples can
be accurately classified using the k-means++ because of the
high spatial correlation for the shadowing component.

VI. CONCLUSION

We have proposed the mesh-clustering-based radio maps
construction method for the autonomous distributed networks.
The proposed method classifies the similar average received
signal power samples for each transmission / reception mesh
using the k-means++. The emulation results have clarified
that the proposed method can accurately predict the location-
dependent radio environment while notably reducing the reg-
istered data size compared to the conventional radio map. Our
method will contribute the realization of the practical radio
map even in the autonomous distributed networks.
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