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Abstract—This paper studies deep learning-based beamform-
ing design schemes for multi-user downlink systems. Two distinct
objectives are considered: sum-rate maximization and min-rate
maximization. Each of formulations is first tackled by classical
majorization-minimization (MM) algorithms that find a locally
optimum point iteratively. To reduce computational overheads of
the MM algorithms, deep neural networks (DNNs) are introduced
which yield optimized beamforming solutions from channel
vector inputs. Performance of trained DNNs is evaluated in terms
of bit-error rate (BER) measure. Numerical results show that
deep learning approaches achieve the BER performance very
close to MM algorithms with much reduced complexity. Also, it
is desirable to adopt the minimum-rate criterion to achieve low
BER performance rather than sum-rate.

Index Terms—Deep learning, beamforming, MM algorithm.

I. INTRODUCTION

In space-division multiple access (SDMA) techniques, high
spectral efficiency can be offered by enabling a base station
(BS) to communicate with multiple user equipments (UEs) at
the same time/frequency resource [1], [2]. The capacity region
of multi-user downlink systems with SDMA was clearly iden-
tified in, e.g., [3]. Capacity-achieving scheme is a non-linear
dirty-paper coding (DPC), which is hard to be implemented.
Practical systems have instead considered linear beamforming
schemes [2], [4], in which BS transmits a superposition of
linearly beamformed data signals.

There have been many iterative algorithms developed to
optimize the beamforming vectors. Some examples are Ma-
jorization Minimization (MM) [5], [6], Weighted Minimum
Mean Squared Error (WMMSE) [4], [7], and Fractional
Programming (FP) [8], [9]. However, all these algorithms
require iterative process, and the number of iterations required
for convergence typically increases with signal-to-noise ratio
(SNR). It was reported in, e.g., [10], [11] that application
of deep learning can be a potential solution to achieve a
good performance, sufficiently close to those of iterative
MM/WMMSE/FP algorithms, with reasonable complexity.

In this work, we provide an overview of state-of-the-art
beamforming techniques, and investigate the bit-error rate
(BER) performance of various beamforming schemes. In par-
ticular, we discuss the problems of sum-rate and minimum-
rate maximization under transmit power constraint at the BS.
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To find a solution, we present a popular numerical algorithm,
namely MM algorithm [5], [6], and the deep learning tech-
nique also known as learning-to-optimize approach [10], [11].
It is observed via numerical results that it is desirable to adopt
the minimum-rate criterion to achieve low BER performance
rather than sum-rate, and that deep learning approach shows
performance very close to MM algorithm.

II. SYSTEM MODEL

Consider a multi-user downlink system where a BS with N
antennas serves K single-antenna UEs. Let K = {1, 2, . . . ,K}
denote the set of UEs’ indices. We model the signal received
by UE k as

yk = hH
k wksk + hH

k

∑
l∈K\{k}

wlsl + zk, (1)

where hk ∈ CN represents channel vector from the BS to UE
k, wk ∈ CN denotes the beamforming vector for UE k, sk
indicates the data signal intended for UE k with E[|sk|2] = 1,
and zk ∼ CN (0, σ2) is the additive Gaussian noise at UE
k. In the right-hand side (RHS) of (1), the first term is the
desired signal, and the second term represents the interference
signals intended for the other UEs than UE k. The signal-
to-interference-plus-noise ratio (SINR) of UE k, denoted as
γk(w) with w = {wk}k∈K, is defined as

γk(w) =
|hH

k wk|2∑
l∈K\{k} |hH

k wl|2 + σ2
. (2)

Under the assumption of the Gaussian channel codebook and
sufficiently large coding blocklength, the BS can communicate
with UE k reliably with a data rate of Rk if the following
condition is satisfied:

Rk ≤ fk(w) = log2 (1 + γk(w)) (3)

Denoting the power budget of BS for RF transmission by P ,
the beamforming vectors w should satisfy the power constraint

∑
k∈K

||wk||2 ≤ P. (4)

Throughout the paper, it is assumed that the BS perfectly
knows all the channel vectors h = {hk}k∈K.

III. PROBLEM DEFINITION AND MM ALGORITHM

We aim at developing beamforming optimization algorithms
for two individual objectives: the sum-rate Rsum �

∑
k∈K Rk

319978-1-7281-6476-2/21/$31.00 ©2021 IEEE ICUFN 2021



and the minimum-rate Rmin � mink∈K Rk. The correspond-
ing problems are formulated as

max.
w,R

RX (5)

s.t. (3), k ∈ K, and (4),

where X ∈ {sum,min} and R = {Rk}k∈K. It has been well-
known that the problem (5) is non-convex for both objectives
due to the constraints (3). There have been various iterative
algorithms for (5), e.g., MM [5], [6], WMMSE [4], [7], and
FP [8], [9].

As a benchmark approach, we consider the MM algo-
rithm that identifies efficient beamforming solutions. With the
change of variables Wk = wkw

H
k , (5) can be restated as

max.
W,R

RX (6a)

s.t. Rk ≤ Fk (W) , k ∈ K, (6b)∑
k∈K

tr (Wk) ≤ P, (6c)

Wk � 0, k ∈ K, (6d)
rank (Wk) ≤ 1, k ∈ K. (6e)

where the rank constraint (6e) is included due to the solution
structure Wk = wkw

H
k and the function Fk(W) in (6b) is

defined as

Fk(W) = log2

(
σ2 +

∑
l∈K

hH
k Wlhk

)

− log2

(
σ2 +

∑
l∈K\{k}

hH
k Wlhk

)
. (7)

Removing the rank constraint (6e) leads to a difference-of-
convex (DC) formulation. A locally optimum solution of such
a rank-relaxed problem can then be addressed by the MM
algorithm [5], [6]. It solves a sequence of convex approxima-
tion problems obtained by linearizing the DC term Fk(W)
in (7). The corresponding MM algorithm for solving (6) is
summarized in Algorithm 1 where z(t) is a quantity of z
evaluated at the t-th iteration. The convex approximation of
Fk(W

(t)) for a given previous solution W(t−1), denoted by
F̃k(W

(t),W(t−1)), is written by

F̃k

(
W(t),W(t−1)

)
= log2

(
σ2 +

∑
l∈K

hH
k W

(t)
l hk

)

− log2 ω
(t−1)
k − 1

ln 2

∑
l∈K\{k}

hH
k

(
W

(t)
l −W

(t−1)
l

)
hk

ω
(t−1)
k

,

with ω
(t−1)
k = σ2 +

∑
l∈K\{k} h

H
k W

(t−1)
l hk.

IV. DEEP LEARNING ASSISTED DESIGN

We discuss a deep learning-based beamforming optimiza-
tion methods for problem (5). Unlike [11] confined to the
sum-rate maximization task, this paper considers a more gen-
eral setup including the minimum-rate maximization problem.
We construct a DNN accepting the channel vector h as
an input feature. System parameters, i.e., {P, σ2}, are also
treated as additional inputs. The resulting outputs denoted by
p � {pk}k∈K ∈ RK

+ and q � {qk}k∈K ∈ RK
+ act as key

feature parameters retrieving efficient beamforming vectors.

Algorithm 1 MM algorithm for tackling the problem (6)

1. Initialize the matrices W(0) such that the constraints (6c),
(6d), and (6e) are satisfied, and set t ← 1.
2. Set W(t) as a solution of the convex problem

max.
W(t),R

RX (8)

s.t. Rk ≤ F̃k

(
W(t),W(t−1)

)
, k ∈ K,

∑
k∈K

tr
(
W

(t)
k

)
≤ P,

W
(t)
k � 0, k ∈ K.

3. If
∑

k∈K ||W(t)
k − W

(t−1)
k ||2F ≤ δ, stop. Otherwise, set

t ← t+ 1, and go back to Step 2.

In particular, we adopt the optimum beamforming structure
expressed by [12]

wk =
√
pk

(
σ2I+

∑
l∈K qlhlh

H
l

)−1
hk

||
(
σ2I+

∑
l∈K qlhlhH

l

)−1
hk||

. (9)

Here, pk stands for the power allocated to UE k, thereby
leading to

∑
k∈K pk = P for satisfying (4). Also, qk indicates

the transmit power of UE k for a dual uplink channel with the
identical power constraint

∑
k∈K qk = P . It has been proved

that any Pareto-boundary achieving beamforming vectors, e.g.,
the sum-rate and minimum-rate maximizing points, can be
identified by adjusting p and q.

Fig. 1 illustrates the proposed DNN structure which outputs
only the feature variables p and q. The final beamforming
vectors w are obtained by the recovery process in (9). The
input-output relationship of the DNN is expressed as {p,q} =
F(h, P, σ2;Θ), where Θ represents learnable parameters of
the DNN. For notational simplicity, let w = G(p,q) be a
collection of the beam recovery process (9) for k ∈ K. It is
not difficult to see that Rk = fk(w) holds at the optimum of
(5). Thus, the sum-rate and the minimum-rate objectives are
rewritten by Rsum(Θ) =

∑
k∈K fk(G(F(h, P, σ2;Θ))) and

Rmin(Θ) = mink∈K fk(G(F(h, P, σ2;Θ))), respectively.
Both objectives are given by functions of the DNN parameter
Θ. The corresponding DNN training task is expressed as

max.
Θ

Eh,P,σ2 [RX(Θ)] . (10)

Thanks to the optimum beam structure (9), the power con-
straint (4) can be ignored in (10) without loss of the optimality.

The training problem (10) is addressed by the mini-batch
stochastic gradient descent (SGD) algorithms, e.g., the Adam
optimizer [13]. Defining B � {h, P, σ2} as a mini-batch
set containing |B| independently generated training samples
{h, P, σ2}, the SGD update rule for DNN parameters Θ at
the t-th epoch is written by

Θ[t] = Θ[t−1] + ηEB [RX(Θ)] , (11)

where η represents the learning rate, and ∇Θ stands for the
gradient with respect to Θ. The training rule in (11) implies
that the proposed approach adopts the unsupervised learning
strategy which does not require labels, i.e., the optimal beam-
forming solution to (5).
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Fig. 1. Deep learning framework for beamforming optimization [11].
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Fig. 2. System BER versus SNR with the BPSK modulation.

V. NUMERICAL RESULTS

The performance of trained DNNs are evaluated in terms
of the average BER. The number of the BS antennas N and
UEs K are set to N = K = 4. The Rayleigh fading setup
is considered. The DNN consists of five hidden layers having
320 output dimension with a rectified linear unit (ReLU). An
output layer is designed with a softmax function for generating
feasible p and q. We focus on the uncoded system with the
BPSK and QPSK modulations. The “system BER” is defined
as the average BER over all UEs.

Figs. 2 depicts the system BER versus the SNR for a multi-
user system with N = K = 4 and BPSK modulation. We
compare the performance of the beamforming schemes opti-
mized with MM algorithm and the DNN with the sum-rate and
minimum-rate maximization criteria. Since the overall BER is
dominated by that of the worst-channel UE, the minimum-rate
objective significantly outperforms the sum-rate maximizing
schemes. The DNN schemes achieve BER performance close
to those of MM algorithms, validating the effectiveness of the
proposed deep learning approach. Also, the DNN approach is
a more computationally efficient scheme compared to the MM
which requires an iterative optimization process.

Fig. 3 compares the system BER performance of various
beamforming schemes obtained for the minimum-rate maxi-
mizing problem. The BER of traditional ZF solution [2] is also
plotted. Regardless of the modulation schemes, the MM and
DNN method achieve notable gains over the ZF baseline. The
performance gain is more pronounced for a higher modulation
level for which the error performance is more sensitive to
interfering signals.
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Fig. 3. System BER versus SNR for minimum-rate maximization criteria.

VI. CONCLUSION

We have studied DNN-based beamforming design tech-
niques for sum-rate and minimum-rate maximizing tasks.
Numerical results have verified the effectiveness of the DNN
approaches over classical MM optimization algorithms. We
have observed that the minimum-rate maximizing beamform-
ing schemes achieve much lower BERs than those of the sum-
rate maximizing schemes.
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