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Abstract— To get high accuracy, various weight should be stored 

in memory. For this, this paper presents tri-state weight static random 
access memory(SRAM). 12T SRAM is a form of power gating on the 
conventional 10T SRAM. By using power gating, the inverter can be 
turned off. The new weight (0) can be stored in 12T SRAM when 
inverter is turned off.  The operator fabricated in a 0.18-μm CMOS 
process dissipates 172.3μW with the supply of 1.8V while 
convolution. Even without sizing, the writing margin is better than 
the conventional SRAM and the accuracy is improved by 23.2%. 

Keywords—12T SRAM, convolutional neural networks (CNN), 
Convolution, processing in memory (PIM), Tri-state weight 

I.  INTRODUCTION 
Artificial intelligence(AI) has changed most of us. Through 

these features, we effectively block spam [1] and early detect 
pendemic disease such as COVID-19 [2]. As AI is applied 
more and more in our lives, the computation of AI is moving 
from the server, the center of network, to devices in the edge of 
network, which called “Edge AI”. The devices in edge of the 
network refers to all Internet-of-Things(IoT), including 
smartphones and TV etc. There is many reason for this 
phenomenon. First, the amount of computation for AI is too 
large that it is difficult to perform only with server. Second, as 
the input data and the result of the computation become more 
complex, the amount of data that needs to communicate with 
the sever increases. Third, “Edge AI” makes immediate 
judgment without communication with server.  

To apply AI to the edge of network, low power and low 
area are essential. Most IoT devices are small and have a small 
amount of battery. However, most AI should work almost all 
time and have to be judged immediately. The proposed 
structure is optimized for “Edge AI”. This structure can reduce 
the area because the write margin is good without SRAM 
sizing, and the leakage current is reduced through power gating, 
and the weight is saved with the SRAM turned off to reduce 
power consumption. In addition, by storing the weights of the 
three states, it improves the accuracy of convolution, an 
important operation in CNN. 

This paper is organized as follows. Section Ⅱ explains the 
characteristic of convolution operator. Section Ⅲ presents the 
architecture of convolution operator. Section Ⅳ explains the 

simulation processes. Section Ⅴ shows the result of simulations. 
the conclusion and the discussion will be in Section Ⅵ 

II. THE CHARACTERISTIC OF CONVOLUTION OPERATOR 

A. 12T SRAM 

 
Fig. 1. Schematic of 12T SRAM 

Fig. 1. shows the schematic of 12T SRAM. It is based on 
conventional 10T SRAM [3]. The additional NMOS and 
PMOS are placed between the power supply and inverter. 
These two MOSFET controlled with ‘Zero’ signal and ‘WL’ 
signal. ‘Zero’ signal becomes high when the weight that will be 
stored in SRAM is zero. ‘WL’ signal becomes high when the 
writing operation is started. ‘Zero`’ ‘WL`’ is the opposite of 
‘Zero’ and ‘WL’ respectively. The advantages of 12T SRAM is 
low power, more weight, and the small area. By using power 
gating method, 12T SRAM can reduce leakage current. The 
additional MOSFET are high threshold voltage(HVT) 
MOSFET. So the leakage current of 12T SRAM is much 
smaller than conventional 10T SRAM. The inverter in SRAM 
can be turned on and off due to the MOSFET between the 
inverter and the power supply. The new weight (0) is stored 
when inverter is turned off. When the inverter is turned off, the 
inside of SRAM becomes floating. Then weight of 0 can be 
stored. The size of M1 should be larger than M2 because of 
writing stability. It can be ignored by turning off inverter while 
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writing. Also 12T SRAM includes advantage of 10T SRAM 
such as reading SNM. 

B. Writing operation of 12T SRAM 

 
Fig. 2. Writing operation of 12T SRAM 

Fig. 2. shows the writing operation for 0 to 1. For the 
conventional 10T SRAM, M1 is directly connected with ground. 
So the sizing issue occur. But, for 12T SRAM, M1 is not 
connected with ground while writing operation. For this reason, 
12T SRAM can change saved data more efficiently, and the 
area of 12T SRAM will be smaller than conventional. 

C. Reading operation of 12T SRAM 

 

Fig. 3. The reading operation of 12T SRAM 

The reading operation of 12T SRAM is similar with 10T 
SRAM. For weight 1, SRAM is turned on. So BL will not be 
discharged and BLb will be discharged. For weight -1, SRAM 
also turned on. So BL will be discharged and BLb will not be 
discharged. When weight 0 is stored, BL and BLb (bit-line-
bar) will not be discharged. This phenomenon is crucial in 
common circuit because BL and BLb store different data from 
saved data in SRAM after reading operation. However, for this 
operator, this problem is not crucial because of the method of 
convolution. 

 

 

D. Convolution [3] 

 

Fig. 4. The circuit of convolution 

The circuit of convolution is implemented in [3]. 
Convolution is multiplication and addition. The multiplication 
is implemented with SRAM reading operation. And the 
addition is implemented with charge conservation law. The 
switch between summing node(Vn, Vp) and each node(BLB1, 
BL1) is controlled by ‘SIGN’ signal which represent sign of 
input value. When negative input comes in, BL is connected to  
Vn, and BLb is connected to Vp. When positive input comes 
in, BL is connected to Vp, and BLb is connected to Vn. 
Voltage of each BL and BLb are averaged since the 
capacitance of each node is same. The result of convolution is 
the voltage difference between Vp and Vn. Because of this 
method, even though BL and BLb stored different data with 
ideal result after reading operation with weight 0, The charge 
of BL and BLb is same. i.e. The same voltage is added to Vp 
and Vn. 

III. THE ARCHITECTURE OF CONVOLUTION OPERATOR 

 
Fig. 5. The schematic of convolution operator 

Fig. 5. is the implementation of convolution operator by 
cadence. It consists of the 1x8 12T SRAM array. Each switch 
is implemented with T-Gate. This operator stored 8 weights 
and get 8 input as analog voltage signal. The output is the 
analog voltage in Vp and Vn nodes. A 100fF capacitor was 
attached to each BL and BLb. Every MOSFET in T-Gate and 
12T SRAM are 2V MOSFET and the HVT MOSFETs 
(additional MOSFET in 12T SRAM) are implemented as 3V 
MOSFET. 

IV. SIMULATION PROCESS 
There are two simulations. First, test the convolution 

operation with specific input for comparing the accuracy and 
power consumption with conventional operator. The other one 
is to test the writing margin. The write margin was considered 
as how little difference voltage could be properly stored. The 
simulation was run with spectre. 
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A. Convolution operation 

TABLE I.  INPUT DATA AND WEIGHTS FOR SIMULATION 

 

In the simulation, it was assumed that the input data 
already passed through the DAC and converted into analog 
voltage, and the difference voltage between the Vp and Vn 
would be converted into digital data through the ADC.  

Input data and weight for simulation is shown as TABLE 1. 
The weight stored in 10T SRAM and 12T SRAM were 
determined by rounding off the real weight. The ideal output is 
17.5. The ideal 10T SRAM output is 22, and the ideal 12T 
SRAM output is 19. The reference voltage for input is 100mV.  

B. Writing margin 
The simulation of writing margin was tested with one cell. 

For 10T SRAM, M2 MOSFET made larger than M1 MOSFET 
considering the sizing of SRAM. For 12T SRAM M2 MOSFET 
made same as M1 MOSFET. While sweeping input voltage, 
check the writing operation for both SRAM cell. The data 
stored in SRAM are Q: 1, Qb: 0. Then, change the data to Q: 0, 
Qb: 1 with sweeping voltage in BL and BLb. 

V. SIMULATION RESULT 

A. Convolution operation 
1) 10T Convolution operator 

 
Fig. 6. Simulation result of 10T convolution operator 

The result of convolution is shown as Figure 6. The 
voltage difference between Vp and Vn is 276.3mV. Since the 
reference voltage of input is 100mV, the reference voltage of 
output is 12.5mV. The output value of the 10T convolution is 
22.1. 

2) 12T Convolution operator 

 
Fig. 7. Simulation result of 12T convolution operator 

For 12T convolution, the voltage difference between Vp 
and Vn is 210.8mV. The output value of the 12T convolution 
is 16.9. 

TABLE II.  SIMULATION RESULT OF CONVOLUTION 

 Measured 
output 

Target 
output 

Target 
error 

Ideal 
output 

Real 
error 

Conventional 
(10T) [3] 22.1 22 0.5% 17.5 26.2% 

Proposed 
(12T) 16.9 19 11% 17.5 3.4% 

The error between measured output and target output of 
12T SRAM is much higher than 10T SRAM. However, actual 
accuracy of 12T SRAM is much higher than 10T SRAM.  

TABLE III.  POWER CONSUMPTION 

 Power consumption 

Conventional (10T) [3] 275.7μW 

Proposed (12T) 172.3μW 

The proposed operator had 103.4μW (37.5%) lower power 
consumption than the conventional operator during 
convolution. 

B. Writing margin 

 
       (a) 10T SRAM                          (b) 12T SRAM 

Fig. 8. Simulation result of writing margin 

The simulation condition is 0.85mV in BL and 0.95mV in 
BLb. Although the size of M1 and M2 are same in 12T SRAM, 

 
Convolutional Operator SRAM cell 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 

Input 1 5 -4 3 9 -8 10 -1 

Weight 
(Real) 

1 0.3 -0.8 0.6 0.2 0.1 0.8 -1 

Weight 
(10T) 

1 1 -1 1 1 1 1 -1 

Weight 
(12T) 

1 0 -1 1 0 0 1 -1 
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the stored value of 10T SRAM did not change under 
simulation conditions, but the value of 12T SRAM did. This 
shows that the writing method of 12T SRAM is more stable 
than the conventional 10T SRAM. 

VI. CONCLUSION 
This paper presents the high accuracy low power 

convolution operator for CNN. We demonstrated the low 
power and high accuracy with simple convolution. Accuracy 
of proposed convolution operator is 23.2% higher than 
conventional operator(10T). And the power consumption is 
also 37.5% lower. The actual accuracy has improved, but the 
measured output is far from the target value. It can be a big 
problem, so we need to do more research for this result.  

The weight distribution of CNN is around a zero-value 
peak. So, Therefore, it is expected that more power 
consumption can be reduced when the proposed architecture is 
grafted onto an actual CNN. This result shows that the 
proposed convolution operator is suitable as convolution 
operator in CNN to be mounted on edge devices such as IoT 
because of low power consumption and high accuracy. 
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