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Abstract—The use of millimeter-wave (mmWave) 
frequencies is a promising technology for meeting the ever-
growing data traffic in next-generation wireless 
communications. A major challenge of mmWave 
communications is the high path loss. To overcome this 
issue, mmWave systems adopt beamforming techniques, 
which require robust channel estimation and tracking 
algorithms to maintain an adequate quality of service. In 
this study, we propose the machine learning-based channel 
tracking algorithm for vehicular mmWave communications. 
In this paper, we propose a long short-term memory 
(LSTM)-based channel tracking algorithm for vehicle-to-
infrastructure mmWave communications. The bidirectional 
LSTM is leveraged to track the channel. Simulation results 
demonstrate that the proposed algorithm efficiently tracks 
the mmWave channel with negligible training overhead. 

Keywords— Channel tracking, Machine learing, Long short-
term memory, Millimeter-wave, MIMO; 

 

I.  INTRODUCTION 
The use of millimeter-wave (mmWave) frequencies is a 

promising technology for supporting high data rates for next-
generation wireless communications [1], [2]. However, 
mmWave communications possess shortcomings, such as signal 
attenuation and reduced transmission distance, owing to their 
short wavelength and high frequencies [3], [4]. However, 
millimeter waves are suitable for use in massive multiple-input–
multiple-output (MIMO) systems, wherein multiple antennas 
are installed within a small space. Based on these features, many 
studies have been performed to overcome the large path losses 
encountered in mmWave bands through the use of a highly 
directional beamforming technique [5]-[7]. To perform high 
directional beamforming, it is necessary to estimate and track 
channels for all transmitter and receiver antenna pairs. In this 
paper, we propose a long short-term memory(LSTM)-based 
channel tracking algorithm in millimeter-wave Vehicle-to-
Infrastructure (V2I) communication. The composition of this 
paper is as follows.  In Section II, we introduce the system and 

channel models for mmWave vehicular communications, and in 
Section III, we describe the proposed channel trackng, and the 
simulation results.  Finally, the paper is concluded in Section IV. 

II. SYSTEM MODEL & CHANNEL MODEL 
Because of the large path loss in mmWave communications, 

We consider the coordinated mmWave communication system, 
where N base stations (BSs) simultaneously serve one mobile 
user, as illustrated in Fig. 1.  
 

 
Fig. 1. Illustration of the considered coordinated mmWave system. 

Each BS is equipped with M(=  × ) antennas, which 
form a uniform planar array (UPA), and the UE has only one 
antenna. The BSs are assumed to be connected to each other so 
that they can share the uplink training signals received from the 
mobile user. For millimeter wave systems in this paper, we 
consider wideband geometric channel models of L clusters. In 
this model, each of the clusters contributes one ray that has a 
time delay, τn,l, and an AoA, θn,l. If p(t) denotes the pulse-shaping 
function, the delay-d channel vector between the user and nth 
BS can be written as 
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III. CHANNEL TRACKING & SIMULATION RESULT 

A. LSTM-based Channel Tracking 
LSTM is an artificial recurrent neural network (RNN) 

architecture that effectively overcomes the vanishing gradient 
issue in a naively designed RNN [8]. The LSTM cell has the 
input layer, xt, and the output layer, yt, during time slot t. An 
LSTM is composed of a memory cell, an input gate, an output 
gate and a forget gate. The cell stores values over arbitrary time 
intervals. The three gates regulate the flow of information into 
and out of the cell. The architecture of the LSTM model is 
illustrated in Fig. 2. The forget gate, ft, input gate, it, and output 
gate, ot, are calculated as 

 
(2) 

 (3) 

 (4) 
 

 
Fig. 2. Structure of the LSTM. 

A bidirectional LSTM (Bi-LSTM) has two hidden layers by 
forward and backward processes, which then feed forward to the 
same output layer [9]. The function of this hidden layer can be 
defined as follows [10]: 

 
(5) 

Note that notations → and ← denote the forward and backward 
processes, respectively. Both the forward and backward layer 
outputs are calculated using the standard LSTM updating 
equations: Eqs. (2)–(4). The Bi-LSTM layer generates an 
output vector in which each element is calculated by Eq. (5). 
For the channel tracking system considered by us, the sequence 
of the most recent T channel estimation results, ℎ,…,ℎ is 
the input of the Bi-LSTM. Furthermore, the next time slot-
estimated channel ℎ is the desired output, which correspond 
to  and the desired output  , respectively, in the Bi-LSTM 
model. In the Bi-LSTM training procedure, the prediction 
results are improved continuously based on advanced memory, 
by discarding some of the ineffective information from the past. 
The predicted channel vector ℎ()  after the training is the 
output of the Bi-LSTM. The difference between this vector  and 
the actual channel vector at the next time ℎ() is negligible. 
Fig. 3 illustrates an example of the Bi-LSTM structure with 

three hidden layers and three time slots for the estimated 
channel sequence.  

 
Fig. 3. Structure of the Bi-LSTM. 

B. Simulation Result 
The simulation setup was based on the publicly-available 

generic DeepMIMO[11] dataset with the parameters. The 
system and channel models are as shown in Section Ⅱ, and 
channel vectors are generated using parameters such as AoA, 
AoD, and path loss. The millimeter wave frequency is 60 GHz. 
The four BSs have UPA antennas and a single antenna vehicle 
UE. To estimate and track the channel vectors of the vehicle UE, 
the travel speed is considered at 10 m/s to 30 m/s. The proposed 
machine learning system evaluates its performance via 
Normalized MSE (NMSE). The NMSE between the 
estimated/tracked channel vector (h ) and the actual channel 
vector (h) is defined as follows. 

 
(6) 

 

 
Fig. 4. The NMSE performance of Bi-LSTM with different number of time 
slots.  

 Figure 4 shows the NMSE performance of Bi-LSTM with 
different numbers of time slots. The time slots of the Bi-LSTM 
input shorten as the vehicular UE speeds up. Furthermore, the 
performance degrades as the time slot of Bi-LSTM increases, 
even for high vehicular UE speed. This is because the estimated 
channel was outdated and the long-predictions inaccurate. Based 
on Fig. 4, we adopt the numbers of time slots according to the 
vehicular environment. For example, Bi-LSTM adopts one time 
slot in a high-speed environment such as a freeway, and three 
time slots in a dense urban environment.  
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 To demonstrate that our algorithm can reduce the pilot 
overhead, we introduce the beam coherence time and effective 
achievable rate, which is a recent concept in mmWave 
communications  to represent the average beam training time 
[12]. The effective achievable rate can be characterized as 

 = (1 −  


) log(1 + ∑ ℎ 

 ) (7) 

 
Fig. 5. The effective achievable rate performance.  

Fig. 5 shows the achievable rate. The algorithm in [13], 
which incurs a higher overhead, has a lower effective achievable 
rate than that of our algorithm. When the number of training 
pilots is increased, the performance difference increases. This 
clearly illustrates the capability of the proposed deep learning-
based algorithm in supporting highly-mobile mmWave 
applications with negligible training overhead. 

 

IV. CONCLUSION 
In this study, we proposed a novel method integrating 

machine learning and channel tracking, and develop its machine 
learning modeling for vehicular mmWave communications. 
More specifically, Bi- LSTM was leveraged to track the channel. 
Bi-LSTM employes the past channel to promote the prediction 
of the user’s channel. The simulation results demonstrated that 
the proposed algorithm tracking the mmWave channel 
efficiently, incurring a negligible training overhead. 
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