
Intelligent Learning Architecture with Hybrid
Features for Phishing Detection

Yu-Hung Chen
Department of Electrical Engineering

National Taiwan University of Science and Technology
Taipei, Taiwan

D10907005@mail.ntust.edu.tw

Jiann-Liang Chen
Department of Electrical Engineering

National Taiwan University of Science and Technology
Taipei, Taiwan

lchen1215@gmail.com

Abstract— This study proposes a novel machine learning
architecture that uses deep learning technology to extract features
from the structure of a web page and construct a model for phishing
detection. Hackers can commit crimes through a variety of Internet
technologies. In recent years, phishing incidents have become more
frequent, and the rapid development of information technology has
enabled hackers to develop more advanced phishing attacks.
Furthermore, the release of phishing toolkits, which are collections of
software tools, make it easier for people with minimal technical skills
to launch their own phishing attacks. Therefore, more attention must
be paid to the prevention of such attacks. Protection from phishing
websites has various aspects, including user training, public
awareness, technical security measures and others. In this research,
we further improve the phishing detection on phishing kits. This
research proposes to use the combination HTML structural feature
with the features proposed by AI@ntiPhish1.0 to train the phishing
detection model. Relevant experimental results demonstrate that the
combination of AI@ntiPhish1.0 features with extracted HTML
structural features is more effective on detecting the phishing kits,
increasing the accuracy thereof from 82% to 87.2%.

Keywords—Phishing attack, Machine Learning, Deep Learning,
Cybersecurity, Data Imbalance

I. INTRODUCTION
With the rapid development of communication technology,

an increase in the digital footprint of enterprises and
individuals has enlarged the potential attack surface: all
connecting devices may become attack targets. New cloud
services and IoT applications to make everyday life more
convenient are gradually emerging. They include those
associated with online payments and online shopping, in
relation to which data verification is required to ensure that a
purchaser is a legitimate user. Personal Identifiable Information
(PII), including account information, passwords, and other
sensitive information, is sent over a network and authenticated
with a database. User information must be transmitted over the
Internet, allowing bad actors to commit financial crimes and
cyber-attacks. Phishing is common away to obtain personal
information and steal identity certification using email or social
media [1].

Phishing is a crime that uses social engineering and
information technology to steal personal information or
financial account credentials. Most phishing websites attempt
to imitate normal websites and are used for criminal activities.
A phishing webpage looks like an official page of a bank,

credit card company, or reputable public/private institution.
Phishing attacks usually send message that contains malicious
links that redirect recipients to fake websites, which request
information such as account information, passwords, for
example. Phishing attacks may even target a specific company
or organization, leading to information leakage from the
company or organization [2]. The attackers can carry out even
more serious internal attacks using the leaked credential data.

A phishing kit is a collection of software tools that helps
people with little or no technical skill to launch a phishing
exploit. It typically includes website development software
with a simple, low-code/no-code graphical user interface (GUI),
and comes complete with email templates, graphics and sample
scripts that can be used to generate convincing imitations of
legitimate correspondence [3]. For an additional price, some
kits may also include lists of e-mail addresses, telephone
numbers and software for automating the malware distribution
process.

Fig. 1. Most-targeted Industries, 2020

According to an analysis by APWG in 2021, phishing
attacks reached their peak in October 2020. In that month,
225,304 new phishing sites were launched, breaking the record.
SaaS and Webmail providers were the most targeted industries
of phishing in 2020, accounting for 30% of all attacks [4], as
shown in Fig. 1.

SaaS/ Webmail
30%

Financial Institution
20%Payment

13%

Social Media
11%

Other
11%

eCommerec/ Retail
7%

Logisticss/ Shipping
4%

Cloud Storge/ File Host
2%

Telecom
2%

225978-1-7281-6476-2/21/$31.00 ©2021 IEEE ICUFN 2021

Phishers sometimes deploy encryption technology to
deceive users into believing that phishing sites are legal and
safe. APWG contributor PhishLabs found that 84% of phishing
sites used SSL encryption in the fourth quarter of 2020, as
shown in Fig. 2. The frequency of encryption deployment on
phishing sites exceeds that on ordinary websites, as only 66.8%
of websites currently use SSL encryption.

Fig. 2. Distribution of Phishing Attacks hosted on "Https"

In recent years, many studies have developed various
phishing detection methods, which can be roughly divided into
three categories: blacklist, visual similarity [5-6] and heuristic
methods [7-10]. Heuristic methods include deep learning
methods, which have emerged in recent years.

URL blacklisting is widely used to detect phishing attacks.
The blacklisting method mostly involves comparing a URL to
links that have been previously reported as phishing links.
Blacklisting detects phishing sites based on a database of
approved and unapproved URLs. Therefore, an up-to-date
blacklist of phishing sites must be maintained.

Many studies have proposed detection that is based on
image analysis. These methods involve taking screenshots of
the website to be analyzed. Rendering the image of the page
takes a long time and the image database must be constantly
updated to ensure the accuracy of legal images.

Emerging artificial intelligence (AI) endows machines with
intelligence and the ability to behave like humans. Many recent
studies have used AI technology to train highly accurate and
stable phishing detection models. AI-based algorithms learn the
difference between phishing sites and legitimate sites without
the disadvantages of blacklisting, and detect phishing more
quickly than image processing or similarity analysis. This
study does further research on more efficient detect and defend
on phishing kit based on the previously developed
AI@ntiPhish1.0 framework [10]. Since phishing kits have
similar html structure, this study proposes to extract structural
feature of phishing kits using a deep learning framework, and
then combine this feature with features proposed by
AI@ntiPhish1.0 to train a phishing detection model with high
accuracy and stability.

II. RELATED WORK
Phishing has been an ongoing problem since the emergence

of the Internet. Hackers try to steal personal information and

improperly use the obtained data. People must be very careful
to avoid being tricked by phishing attacks, and require effective
strategies to respond to such incidents if they are tricked. In
recent years, many methods for detecting phishing have been
proposed; they include such as blacklisting, image analysis,
and others.

Blacklisting is a traditional phishing detection technique,
which compares URLs with phishing links that have been
reported by victims. This method relies on feedback from
victims who have been deceived. A reported URL must be
manually analyzed to determine whether it should be added it
to the database. The disadvantage of this method is its failure to
detect phishing attacks that have not been reported, so the
blacklist database may be regarded as insufficient or even
defective. Blacklist methods are already embedded in popular
browsers, such as Google Chrome, Firefox, IE, and others.

Image-based phishing detection has been frequently used in
recent years. This method involves capturing screenshots of
web pages to be identified and extracts image features through
certain feature extraction techniques. Traditional image
processing methods include SIFT, SURF, HOG, etc. Deep
learning methods that have been developed in recent years
include CNN, LSTM, etc. After extracting the image using the
above feature extraction method, the similarity is calculated
with all the images in the image database through the distance
formula. Ultimately, the tested URL is compared with the URL
of the most similar legitimate website.

Haruta et al. proposed a novel visual similarity-based
phishing detection scheme that uses hue information with an
auto-updating database [5]. They combined whitelisting with
an image signature to identify legitimate websites and phishing
websites. Under this mechanism, the author prepared a lot of
phishing website images, calculated the color ratios of these
images, and filtered each image for analysis against a whitelist.
After the preprocessing, the author compared the similarity of
the suspicious images with the existing image database. If the
image database contained similar web pages, then the web page
was identified as a phishing web page. Since convolutional
neural networks (CNN) have been very effective in image
classification tasks overthe past ten years, they are often used
in image classification tasks. However, training a deep learning
model requires a large dataset and adjusting and optimizing the
weight of the model to make the model more stable and
effective takes a long time. Accordingly, Phoka et al. proposed
the use of transfer learning technique to enhance the
effectiveness and accuracy of image processing for phishing
detection [6]. They used a CNN model, trained on the
ILSVRC-2012-CLS dataset, as a pre-training model, to which
they added enhanced phishing images for retraining. Finally,
the output model is used for phishing detection and verification.

Heuristic analysis is to extract the features of legitimate
websites and phishing websites and use artificial intelligence
algorithms to quantify, train and learn the extracted features,
which enhance the phishing recognition ability of the detection
model.

Ghimire et al. used various algorithms, including Decision
Tree (DT), Support Vector Machine (SVM) to train and
evaluate different models [7]. To solve the problem of data

226

imbalance, the model combines under-sampling and over-
sampling techniques. Experiment results revealed that the
over-sampling method can bring effective help to the
allogeneic of unbalanced data. Kumar et al. [8] proposed a
URL-based lightweight machine learning model for phishing
detection. Their method extracts 24 features from the URL and
is trained using various algorithms, including Random Forest
(RF), Fully Connected Neural Network (FNN), and others. The
accuracy of the detection model that was thus trained on the
Kaggle dataset reached 95.07%, while the accuracies of that
trained on the UNB dataset for multi-class and binary-class
classification were 97.75% and 99.72%, respectively. Since
most people are directed to phishing websites from emails,
some people apply Natural Language Processing (NLP) to
detect phishing emails. Gualberto et al. [9] proposed a multi-
level structure method for analyzing the content of emails using
NLP. Their method extracts text from the body of an email and
then extracts the corresponding text vector using Term
Frequency–Inverse Document Frequency (TF-IDF). The
extracted vectors are then preprocessed using two different
feature extraction methods. The first applies Mutual
Information and Chi-square processing to the features. The
second extracts feature by using PCA and LSA. Finally, the
extracted features are input to different AI algorithms for
training; these include K-Nearest Neighbor (KNN), Extreme
Gradient Boosting (XGBoost), and others. Based on the results
of their analysis, they proposed that the LSA of Method 2
combined with the XGBoost algorithm can yield an F1-score
of 100%, as can the use of Chi-square with Random Forest.
AI@ntiPhish1.0 [10] proposed a novel machine learning
architecture and various learning algorithms to build anti-
phishing services to avoid phishing attacks. In the
AI@ntiPhish1.0 framework, extracted feature data are used
mostly in the first stage of, which involves feature evaluation
and analysis by applying statistical and mathematical models.
In the second stage, the extracted features are trained and
evaluated through traditional machine learning algorithms, and
their effectiveness and accuracy are analyzed. The
AI@ntiPhish1.0 framework also evaluates the ensemble
learning concept by combining multiple classifiers, such as
Adaboost, bagging, and voting. The author claimed that among
their considered algorithms, the XGBoost model performed
best. In addition, AI@ntiPhish1.0 raises the problem of data
imbalance in the training process and generates data by
applying the over-sampling SMOTE algorithm in response to
this problem. It then trains model using these generated data.
Experimental results reveal that the proposed learning
architecture with the SMOTE method improved the model
coverage and performed best with respect to accuracy,
precision, and recall. In recent years, the generation of
representations through learning and the application of
representation vectors to classification tasks or clustering tasks
have aroused great interest and seen considerable progress [11-
12]. Alon et al. [11] proposed a deep learning method for
learning the feature vector of code, and evaluated the
extensibility and generalizability of this vector. The
architecture of the method is called code2vec. In an experiment,
Jave’s code was converted into an Abstract Syntax Tree (AST)
and its syntax path was used as a representation. However, the
declaration of parameters in the code frequently exhibits high

variability, and training directly makes the matrix sparser. To
solve this problem, Alon et al. first normalized the variables
before training and then learn relevant feature vectors through
deep learning from these representations. According to the
relevant experimental results, in addition to effectively
representing the similarity between functions, the resulting
feature vector effectively represents the encrypted functions
without being affected by the encryption.

Although heuristic analysis can increase the ability of
recognizing phishing websites, the accuracy of the models will
be influenced by the amount of data and the characteristics of
the features of those sites. When the number of phishing sites
collected is larger, the range that the model can learn is wider,
which can have better recognition ability. In contrast, if the
training data are insufficient, learning enough to determine
whether it is a phishing site is difficult, resulting in a higher
error rate. When a feature disappears from a phishing site or a
phishing page is embedded into a certain path in a legitimate
website, the accuracy of the detection model is affected. In
recent years, the emergence of phishing kits has helped people
with almost no technical skills to launch phishing attacks.
Similar html templates can be set up on websites with different
characteristics. The structure of html changes rapidly. In order
to cache up the rapid change of html structure, it needs more
generalized method to represent the html with sufficient feature
efficiently. Embedding method transform the input data into a
fixed dimension while keeping the most important feature. The
feature extracted by the embedding method can also make the
model more generalized. To represents the structure of HTML
and extract more features from it, a learning framework that
can represent its structure effectively is proposed. The
extracted structural feature can be combined with
AI@ntiPhish1.0 features effectively to improve the detection
of, and defense against, such phishing kits. Comparing with
model without the embedding feature, model trained with
embedding feature has better results.

Fig. 3. Learning Architecture

III. PROPOSED ARCHITECTURE
This research concerns the intelligent learning architecture

of AI@ntiPhish1.0 and combines the feature vector with those

227

generated by html embedding learning architecture for
phishing detection. Fig. 3 displays the architecture.

A. Data Collection
In this study, many phishing and legal websites were

obtained from various sources, such as PhishTank, Alexa,
VirusTotal, and others. Then, the collected data were sent to
the HTML Embedding Learning Module and the Feature
Extraction Module. The Feature Extraction Module uses the 28
features that were proposed in AI@ntiPhish1.0, as shown in
Table I. The HTML Embedding Learning Module uses an
autoencoder-decoder framework to learn features that can
effectively represent the HTML structure, and requires a large
amount of the HTML structures for training. A total of
10,000,000 HTML structural data were used to train the HTML
embedding model. The training data that are used to develop
the phishing detection model are associated with 25,000
phishing sites and 100,000 normal sites. These training data
were collected from 2020/12/01 to 2020/12/31. With respect to
the testing data, 1000 data of phishing and normal sites were
collected respectively from 2021/01/01~2021/01/10.

B. Feature Extraction
The two sources of the training features were the html

embedding learning module and the feature extraction module,
as shown in Fig. 1. After collection, the training data were sent
to the html embedding learning module and the feature
extraction module that were used by AI@ntiPhish1.0. The
features that were used by AI@ntiPhish1.0 included a lexical-
based feature, a content-based feature, a host-based feature, and
a link-based feature. The features that were most relevant were
extracted using a mathematical model and statistical methods
in the feature evaluation module. According to the analysis
results of AI@ntiPhish1.0, the most effective feature
information for training the phishing detection model were
finally extracted. Table I presents the corresponding features.
To increase the accuracy of detection of phishing kits by the
model, the html embedding learning framework, which uses
deep learning to learn the structure of html and extracts the
feature vector that can be used to interpret the html structure
through the final well-trained model, is proposed. Finally, the
concatenation of html embedding features and the feature that
was extracted by the AI@ntiPhish1.0 architecture is used to
train the phishing detection model.

Since the html structure can interpret the hierarchical
relationship between html tags via using the DOM (Document
Object Model), the html was converted into a DOM in the html
embedding learning module. The same hierarchical
relationship of the html tags was captured and concatenated
into a sequence, as shown in Fig. 4. During training of the
embedding learning module, the sequence was extracted from
html in order, and then preprocessed by deduplication, feature
evaluation, dimensional reduction, and other procedures. Since
the html tags were hierarchically related to each other, the
autoencoder-decoder architecture in the html feature extraction
module used the sequence-to-sequence architecture with a
Long-Short Term Memory Network (LSTM) for training.
LSTM is an extension of the recurrent neural network, which
can maintain information in memory for longer time period.

The extracted html sequence has order-dependency between
html tags in the sequence, so we choose to use the LSTM
architecture.

TABLE I. PHISHING FEATURES

Symbol Feature Symbol Feature

F1 is_http_connection F15 null_a_tag

F2 is_ip_address F16 script_block_rate
F3 dots F17 style_block_rate
F4 is_special_words F18 get_title_feature
F5 url_linkin_num F19 is_login_form

F6 url_traffic_rank F20 is_with_whois

F7 get_kbytes F21 get_time

F8 is_frame F22 is_redirect
F9 is_meta_redirect F23 ipv4_numbers

F10 is_meta_base64_red
irect F24 ipv6_numbers

F11 same_extern_domai
n_script_rate F25 organization

F12 same_external_dom
ain_link_rate F26 is_alias

F13 same_external_dom
ain_img_rate F27 is_weird_serial

F14 external_a_tag_sam
e_domain F28 get_day_age

C. Data Generation
The feature concatenating module aggregates the features

that are extracted by html embedding extraction module and
feature extraction module, and then sends the aggregated
vector to the data generation module for data generation. In
practice, the amount of data on legitimate websites is much
larger than that on phishing websites. Therefore, to solve the
problem of data imbalance, the Synthetic Minority Over-
sampling TEchnique (SMOTE) is used herein to generate more
data.

The theory of SMOTE is to find K nearest neighbor data
points of the same category and draw lines among them, and
then to generate similar data from the data points on the lines.
The relevant formula is shown in (1).

 Xnew = Xi + (X' - Xi) ․δ (1) a + b = c. (1) (1)

Xi is a data point that is randomly select from the minority
class dataset; X' is the data point that is closest to Xi; δ is
between 0 and 1.

D. Learning Algorithm
After data generation, all data and features are propagated

to the intelligent learning module for learning. The intelligent
learning module trains and optimizes the phishing detection
model, based on the input data. The results of the analysis
based on AI@ntiPhish1.0 reveal that the XGBoost model has
substantially greater accuracy and stability in phishing
detection than other algorithms. Additionally, the data that are
generated using the SMOTE method effectively increase the
accuracy of the detection model. In this research, all data

228

(including generated data) and features are trained and
optimized through XGBoost, and the benefits of the html
embedding learning module, proposed in this research, in the
detection of phishing websites is evaluated.

Fig. 4. Extracted tag sequence from DOM

E. Evaluation Standard
The following performance evaluation mechanism is used

to evaluate the performance of the proposed model. The
performance indicators are accuracy, precision, recall, and f1-
score. The calculation formula is shown in Table II.

TABLE II. EVALUATION INDICATORS

Symbol Feature
Accuracy (TP+TN)/(TP+FN+FP+TN)
Precision TP/(FP+TP)

Recall TP/(FN+TP)
F1 score (2*Precision*Recall)/(Precision+Recall)

IV. EXPERIMENTAL RESULTS
A large amount of data from PhishTank, Alexa, and

VirusTotal, were collected. The training and parameter
selection of the detection model were performed using 100,000
legitimate websites and 25,000 phishing websites. The training
data were collected from 2020/12/01 to 2020/12/31. Since the
training of the html embedding learning module is a form of
unsupervised learning, 1,000,000 html structures were
randomly selected. For the testing data of the model, we select
1000 phishing websites and 1000 legitimate websites from
2021/01/01 to 2021/01/10 in order to avoid duplicate data
between training and testing, and also simulate testing
circumstances in real-world. Table III and Table IV present
detailed hardware configuration and parameter settings for
training the html embedding.

 Ten-fold cross-validation is used to evaluate the effect and
benefits of the XGBoost algorithm with different numbers of
estimators. The number of estimators that provides the best
performance and the highest stability are selected. After that,
we evaluate the performance of the model trained with the
optimization parameters on the testing dataset. The experiment
evaluates the model in the following four scenarios; XGBoost

trained with 28 features, XGBoost trained with 28 features and
html embedding features, XGBoost trained with 28 features
and combined with the SMOTE method, and XGBoost trained
with 28 features and html embedding features and combined
the SMOTE method.

TABLE III. HARDWARE CONFIGURATION

Symbol Feature
CPU Intel(R)Xeon(R)CPUE5-2620 v4

Memory / HDD / SSD 32GB/2TB/256GB
Linux Ubuntu 16.04
GPU 3*MSI GTX 1080Ti 11G

TABLE IV. PARAMETER OF HTML EMBEDDING LEARNING FRAMEWORK

Symbol Feature
Max sequence length 500

Batch size 16
Epoch 1000

LSTM cell 64
Learning rate 0.0001

Dropout 0.6
 This experimental design, involving four scenarios, not
only reveals the impact of 28 features on the training of
phishing detection models that were developed in recent years,
it also provides insight into on the extent to which the html
embedding features and SMOTE algorithm can improve the
detection model. During the analysis, this study also evaluated
the number of estimators. The number of estimators was
adjusted from 5 to 50 in steps of five estimators and the
accuracy of the model in each case was calculated. The orange
line and the blue line in Fig. 5 represent the effects of adding
and not adding html embedding features, respectively.
According to the experimental results, for any number of
estimators, the accuracy of the model with additional html
embedding features significantly exceeds that without html
embedding features. The gray line and yellow line in Fig. 5
indicate that the use of the SMOTE algorithm for data
generation is effective models that include and exclude html
embedding features. The results of this analysis indicate that
using the SMOTE algorithm can enhance model training and
detection, as revealed by the blue and gray lines or the orange
and yellow lines in Fig. 5. When the html embedding features
are added and the SMOTE algorithm is used to generate data,
the accuracy of the detection model can be improved again.
The XGBoost model performs best in all of the scenarios when
the number of estimators is 45. Fig. 6 displays a detailed
performance evaluation of the XGBoost model with 45
estimators.

The extent to which the addition of an html embedding
feature can improve the model training without use of the
SMOTE algorithm is evaluated. The results show that when
XGBoost is trained with html embedding features, the accuracy
is increased from 74.80% to 79.40%, and Recall and Precision
are also greatly improved. When the model training is
conducted using the SMOTE algorithm for data generation, it
can bring more help to the diversity of the model. According to
the experimental results, using the SMOTE algorithm increases
the accuracy by 10%. The method that was proposed by
AI@ntiPhish1.0, which does not include the html embedding
feature has an accuracy of 82%, which exceeds that of both

229

XGBoost with html embedding and that of XGBoost without
html embedding. Finally, when html embedding features and
the SMOTE algorithm for data generation are added, an
accuracy of 87.2% is obtained; this is nearly 5% higher than
the accuracy of the model that was trained by the
AI@ntiPhish1.0 architecture.

Fig. 5. Accuracy of XGBoost with imbalanced learning, and html embedding

Fig. 6. Accuracy of XGBoost for testing data with imbalanced learning, and
html embedding (Estimator=45)

V. CONCLUSIONS
This paper proposed a framework for phishing detection; it

involves a feature extraction module that consists of two parts;
one uses the 28 features that were proposed by AI@ntiPhish1.0,
and the other is the html embedding feature. The html
embedding feature is extracted from the sequence-to-sequence
model that was composed of LSTM in the html embedding
learning module that was proposed by this research. Finally,
we train and evaluate the html embedding features generated
by the html embedding learning module and the 28 features
used by AI@ntiPhish1.0. The relevant experimental results
show that when the html embedding feature is added to the
trained detection model, its accuracy in detecting phishing
websites is significantly improved. In the future, we can use
different algorithms to perform the embedding. The embedding
does not have to be performed using deep learning. Perhaps the
same enhancement of accuracy can be achieved using
traditional machine learning methods. In addition, we can also
try to add the attributes of the html structure to the learning of
embedding to enrich the html representation. In recent years,

research into graph neural networks have accelerated. The html
embedding that is conducted in this research can be combined
with files or email applications to form a correlation graph. Our
future research will focus on how to use GNN or GCN
analytical methods to learn graphs or extend to detect attacks
on various applications.

ACKNOWLEDGMENT
Authors thank for financial supports of the Ministry of

Science and Technology, Taiwan under contract MOST 108-
2221-E-011-068-MY2.

REFERENCES
[1] A. Odeh, I. Keshta and E. Abdelfattah, "Machine

LearningTechniquesfor Detection of Website Phishing: A Review for
Promises and Challenges," Proceedings of the 2021 IEEE 11th Annual
Computing and Communication Workshop and Conference (CCWC), pp.
0813-0818, 2021.

[2] R. Zaimi, M. Hafidi and M. Lamia, "Survey paper: Taxonomy of
website anti-phishing solutions," Proceedings of the 2020 Seventh
International Conference on Social Networks Analysis, Management
and Security (SNAMS), pp. 1-8, 2020.

[3] A. Oest, Y. Safei, A. Doupé, G. Ahn, B. Wardman and G. Warner,
"Inside a phisher's mind: Understanding the anti-phishing ecosystem
through phishing kit analysis," Proceedings of the 2018 APWG
Symposium on Electronic Crime Research (eCrime), pp. 1-12, 2018.

[4] APWG, PHISHING ACTIVITY TRENDS REPORTS,
https://apwg.org/trendsreports/

[5] S. Haruta, F. Yamazaki, H. Asahina and I. Sasase, "A Novel Visual
Similarity-based Phishing Detection Scheme using Hue Information
with Auto Updating Database," Proceedings of the 2019 25th Asia-
Pacific Conference on Communications (APCC), pp. 280-285, 2019.

[6] T. Phoka and P. Suthaphan, "Image Based Phishing Detection Using
Transfer Learning," Proceedings of the 2019 11th International
Conference on Knowledge and Smart Technology (KST), pp. 232-237,
2019.

[7] A. Ghimire, A. Kumar Jha, S. Thapa, S. Mishra and A. Mani Jha,
"Machine Learning Approach Based on Hybrid Features for Detection
of Phishing URLs," Proceedings of the 2021 11th International
Conference on Cloud Computing, Data Science & Engineering
(Confluence), pp. 954-959, 2021.

[8] Y. Kumar and B. Subba, "A lightweight machine learning based security
framework for detecting phishing attacks," Proceedings of the 2021
International Conference on COMmunication Systems & NETworkS
(COMSNETS), pp. 184-188, 2021

[9] E. S. Gualberto, R. T. De Sousa, T. P. De Brito Vieira, J. P. C. L. Da
Costa and C. G. Duque, "The Answer is in the Text: Multi-Stage
Methods for Phishing Detection Based on Feature Engineering," Journal
of IEEE Access, Vol. 8, pp. 223529-223547, 2020.

[10] Y. H. Chen and J. L. Chen, "AI@ntiPhish — Machine Learning
Mechanisms for Cyber-Phishing Attack," Journal of the 2019 IEICE
Transactions on Information and Systems, Vol. E102-D, No. 5, pp. 878-
887, 2019.

[11] U. Alon, M. Zilberstein, O. Levy and Eran Yahav, "Code2vec: learning
distributed representations of code," Proceedings of ACM Program, pp.
1-29, 2019.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser and I. Polosukhin, "Attention is All You Need," Proceedings
of the 31st International Conference on Neural Information Processing
Systems, pp. 6000-6010, 2017.

XGBoost (exclude html embedding)

XGBoost (include html embedding)

AI@ntiPhish1.0 - XGBoost with SMOTE (exclude html embedding)

XGBoost with SMOTE (include html embedding)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Accuracy Precision Recall F1 score

74.80% 73.84% 76.80% 75.30%

79.40% 76.40%
85.00%

80.47%

82.00% 81.37% 83.00% 82.17%

87.20% 85.56% 89.50% 87.48%

XGBoost (exclude html embedding) XGBoost (include html embedding)
AI@ntiPhish1.0 - XGBoost with SMOTE (exclude html embedding) XGBoost with SMOTE (include html embedding)

230

