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Abstract— This study proposes a novel machine learning 
architecture that uses deep learning technology to extract features 
from the structure of a web page and construct a model for phishing 
detection. Hackers can commit crimes through a variety of Internet 
technologies. In recent years, phishing incidents have become more 
frequent, and the rapid development of information technology has 
enabled hackers to develop more advanced phishing attacks. 
Furthermore, the release of phishing toolkits, which are collections of 
software tools, make it easier for people with minimal technical skills 
to launch their own phishing attacks. Therefore, more attention must 
be paid to the prevention of such attacks. Protection from phishing 
websites has various aspects, including user training, public 
awareness, technical security measures and others. In this research, 
we further improve the phishing detection on phishing kits. This 
research proposes to use the combination HTML structural feature 
with the features proposed by AI@ntiPhish1.0 to train the phishing 
detection model. Relevant experimental results demonstrate that the 
combination of AI@ntiPhish1.0 features with extracted HTML 
structural features is more effective on detecting the phishing kits, 
increasing the accuracy thereof from 82% to 87.2%. 

Keywords—Phishing attack, Machine Learning, Deep Learning, 
Cybersecurity, Data Imbalance 

I.  INTRODUCTION 
With the rapid development of communication technology, 

an increase in the digital footprint of enterprises and 
individuals has enlarged the potential attack surface: all 
connecting devices may become attack targets. New cloud 
services and IoT applications to make everyday life more 
convenient are gradually emerging. They include those 
associated with online payments and online shopping, in 
relation to which data verification is required to ensure that a 
purchaser is a legitimate user. Personal Identifiable Information 
(PII), including account information, passwords, and other 
sensitive information, is sent over a network and authenticated 
with a database. User information must be transmitted over the 
Internet, allowing bad actors to commit financial crimes and 
cyber-attacks. Phishing is common away to obtain personal 
information and steal identity certification using email or social 
media [1]. 

Phishing is a crime that uses social engineering and 
information technology to steal personal information or 
financial account credentials. Most phishing websites attempt 
to imitate normal websites and are used for criminal activities. 
A phishing webpage looks like an official page of a bank, 

credit card company, or reputable public/private institution. 
Phishing attacks usually send message that contains malicious 
links that redirect recipients to fake websites, which request 
information such as account information, passwords, for 
example. Phishing attacks may even target a specific company 
or organization, leading to information leakage from the 
company or organization [2]. The attackers can carry out even 
more serious internal attacks using the leaked credential data. 

A phishing kit is a collection of software tools that helps 
people with little or no technical skill to launch a phishing 
exploit. It typically includes website development software 
with a simple, low-code/no-code graphical user interface (GUI), 
and comes complete with email templates, graphics and sample 
scripts that can be used to generate convincing imitations of 
legitimate correspondence [3]. For an additional price, some 
kits may also include lists of e-mail addresses, telephone 
numbers and software for automating the malware distribution 
process. 

 

Fig. 1. Most-targeted Industries, 2020 

According to an analysis by APWG in 2021, phishing 
attacks reached their peak in October 2020. In that month, 
225,304 new phishing sites were launched, breaking the record. 
SaaS and Webmail providers were the most targeted industries 
of phishing in 2020, accounting for 30% of all attacks [4], as 
shown in Fig. 1. 
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Phishers sometimes deploy encryption technology to 
deceive users into believing that phishing sites are legal and 
safe. APWG contributor PhishLabs found that 84% of phishing 
sites used SSL encryption in the fourth quarter of 2020, as 
shown in Fig. 2. The frequency of encryption deployment on 
phishing sites exceeds that on ordinary websites, as only 66.8% 
of websites currently use SSL encryption. 

 

Fig. 2. Distribution of Phishing Attacks hosted on "Https" 

In recent years, many studies have developed various 
phishing detection methods, which can be roughly divided into 
three categories: blacklist, visual similarity [5-6] and heuristic 
methods [7-10]. Heuristic methods include deep learning 
methods, which have emerged in recent years. 

URL blacklisting is widely used to detect phishing attacks. 
The blacklisting method mostly involves comparing a URL to 
links that have been previously reported as phishing links. 
Blacklisting detects phishing sites based on a database of 
approved and unapproved URLs. Therefore, an up-to-date 
blacklist of phishing sites must be maintained. 

Many studies have proposed detection that is based on 
image analysis. These methods involve taking screenshots of 
the website to be analyzed. Rendering the image of the page 
takes a long time and the image database must be constantly 
updated to ensure the accuracy of legal images. 

Emerging artificial intelligence (AI) endows machines with 
intelligence and the ability to behave like humans. Many recent 
studies have used AI technology to train highly accurate and 
stable phishing detection models. AI-based algorithms learn the 
difference between phishing sites and legitimate sites without 
the disadvantages of blacklisting, and detect phishing more 
quickly than image processing or similarity analysis. This 
study does further research on more efficient detect and defend 
on phishing kit based on the previously developed 
AI@ntiPhish1.0 framework [10]. Since phishing kits have 
similar html structure, this study proposes to extract structural 
feature of phishing kits using a deep learning framework, and 
then combine this feature with features proposed by 
AI@ntiPhish1.0 to train a phishing detection model with high 
accuracy and stability. 

II. RELATED WORK 
Phishing has been an ongoing problem since the emergence 

of the Internet. Hackers try to steal personal information and 

improperly use the obtained data. People must be very careful 
to avoid being tricked by phishing attacks, and require effective 
strategies to respond to such incidents if they are tricked. In 
recent years, many methods for detecting phishing have been 
proposed; they include such as blacklisting, image analysis, 
and others. 

Blacklisting is a traditional phishing detection technique, 
which compares URLs with phishing links that have been 
reported by victims. This method relies on feedback from 
victims who have been deceived. A reported URL must be 
manually analyzed to determine whether it should be added it 
to the database. The disadvantage of this method is its failure to 
detect phishing attacks that have not been reported, so the 
blacklist database may be regarded as insufficient or even 
defective. Blacklist methods are already embedded in popular 
browsers, such as Google Chrome, Firefox, IE, and others. 

Image-based phishing detection has been frequently used in 
recent years. This method involves capturing screenshots of 
web pages to be identified and extracts image features through 
certain feature extraction techniques. Traditional image 
processing methods include SIFT, SURF, HOG, etc. Deep 
learning methods that have been developed in recent years 
include CNN, LSTM, etc. After extracting the image using the 
above feature extraction method, the similarity is calculated 
with all the images in the image database through the distance 
formula. Ultimately, the tested URL is compared with the URL 
of the most similar legitimate website. 

Haruta et al. proposed a novel visual similarity-based 
phishing detection scheme that uses hue information with an 
auto-updating database [5]. They combined whitelisting with 
an image signature to identify legitimate websites and phishing 
websites. Under this mechanism, the author prepared a lot of 
phishing website images, calculated the color ratios of these 
images, and filtered each image for analysis against a whitelist. 
After the preprocessing, the author compared the similarity of 
the suspicious images with the existing image database. If the 
image database contained similar web pages, then the web page 
was identified as a phishing web page. Since convolutional 
neural networks (CNN) have been very effective in image 
classification tasks overthe past ten years, they are often used 
in image classification tasks. However, training a deep learning 
model requires a large dataset and adjusting and optimizing the 
weight of the model to make the model more stable and 
effective takes a long time. Accordingly, Phoka et al. proposed 
the use of transfer learning technique to enhance the 
effectiveness and accuracy of image processing for phishing 
detection [6]. They used a CNN model, trained on the 
ILSVRC-2012-CLS dataset, as a pre-training model, to which 
they added enhanced phishing images for retraining. Finally, 
the output model is used for phishing detection and verification. 

Heuristic analysis is to extract the features of legitimate 
websites and phishing websites and use artificial intelligence 
algorithms to quantify, train and learn the extracted features, 
which enhance the phishing recognition ability of the detection 
model. 

Ghimire et al. used various algorithms, including Decision 
Tree (DT), Support Vector Machine (SVM) to train and 
evaluate different models [7]. To solve the problem of data 
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imbalance, the model combines under-sampling and over-
sampling techniques.  Experiment results revealed that the 
over-sampling method can bring effective help to the 
allogeneic of unbalanced data. Kumar et al. [8] proposed a 
URL-based lightweight machine learning model for phishing 
detection. Their method extracts 24 features from the URL and 
is trained using various algorithms, including Random Forest 
(RF), Fully Connected Neural Network (FNN), and others. The 
accuracy of the detection model that was thus trained on the 
Kaggle dataset reached 95.07%, while the accuracies of that 
trained on the UNB dataset for multi-class and binary-class 
classification were 97.75% and 99.72%, respectively. Since 
most people are directed to phishing websites from emails, 
some people apply Natural Language Processing (NLP) to 
detect phishing emails. Gualberto et al. [9] proposed a multi-
level structure method for analyzing the content of emails using 
NLP. Their method extracts text from the body of an email and 
then extracts the corresponding text vector using Term 
Frequency–Inverse Document Frequency (TF-IDF). The 
extracted vectors are then preprocessed using two different 
feature extraction methods. The first applies Mutual 
Information and Chi-square processing to the features. The 
second extracts feature by using PCA and LSA. Finally, the 
extracted features are input to different AI algorithms for 
training; these include K-Nearest Neighbor (KNN), Extreme 
Gradient Boosting (XGBoost), and others. Based on the results 
of their analysis, they proposed that the LSA of Method 2 
combined with the XGBoost algorithm can yield an F1-score 
of 100%, as can the use of Chi-square with Random Forest. 
AI@ntiPhish1.0 [10] proposed a novel machine learning 
architecture and various learning algorithms to build anti-
phishing services to avoid phishing attacks. In the 
AI@ntiPhish1.0 framework, extracted feature data are used 
mostly in the first stage of, which involves feature evaluation 
and analysis by applying statistical and mathematical models. 
In the second stage, the extracted features are trained and 
evaluated through traditional machine learning algorithms, and 
their effectiveness and accuracy are analyzed. The 
AI@ntiPhish1.0 framework also evaluates the ensemble 
learning concept by combining multiple classifiers, such as 
Adaboost, bagging, and voting. The author claimed that among 
their considered algorithms, the XGBoost model performed 
best. In addition, AI@ntiPhish1.0 raises the problem of data 
imbalance in the training process and generates data by 
applying the over-sampling SMOTE algorithm in response to 
this problem. It then trains model using these generated data. 
Experimental results reveal that the proposed learning 
architecture with the SMOTE method improved the model 
coverage and performed best with respect to accuracy, 
precision, and recall. In recent years, the generation of 
representations through learning and the application of 
representation vectors to classification tasks or clustering tasks 
have aroused great interest and seen considerable progress [11-
12]. Alon et al. [11] proposed a deep learning method for 
learning the feature vector of code, and evaluated the 
extensibility and generalizability of this vector. The 
architecture of the method is called code2vec. In an experiment, 
Jave’s code was converted into an Abstract Syntax Tree (AST) 
and its syntax path was used as a representation. However, the 
declaration of parameters in the code frequently exhibits high 

variability, and training directly makes the matrix sparser. To 
solve this problem, Alon et al. first normalized the variables 
before training and then learn relevant feature vectors through 
deep learning from these representations. According to the 
relevant experimental results, in addition to effectively 
representing the similarity between functions, the resulting 
feature vector effectively represents the encrypted functions 
without being affected by the encryption. 

Although heuristic analysis can increase the ability of 
recognizing phishing websites, the accuracy of the models will 
be influenced by the amount of data and the characteristics of 
the features of those sites. When the number of phishing sites 
collected is larger, the range that the model can learn is wider, 
which can have better recognition ability. In contrast, if the 
training data are insufficient, learning enough to determine 
whether it is a phishing site is difficult, resulting in a higher 
error rate. When a feature disappears from a phishing site or a 
phishing page is embedded into a certain path in a legitimate 
website, the accuracy of the detection model is affected. In 
recent years, the emergence of phishing kits has helped people 
with almost no technical skills to launch phishing attacks. 
Similar html templates can be set up on websites with different 
characteristics. The structure of html changes rapidly. In order 
to cache up the rapid change of html structure, it needs more 
generalized method to represent the html with sufficient feature 
efficiently. Embedding method transform the input data into a 
fixed dimension while keeping the most important feature. The 
feature extracted by the embedding method can also make the 
model more generalized. To represents the structure of HTML 
and extract more features from it, a learning framework that 
can represent its structure effectively is proposed. The 
extracted structural feature can be combined with 
AI@ntiPhish1.0 features effectively to improve the detection 
of, and defense against, such phishing kits. Comparing with 
model without the embedding feature, model trained with 
embedding feature has better results.  

 

Fig. 3. Learning Architecture 

III. PROPOSED ARCHITECTURE 
This research concerns the intelligent learning architecture 

of AI@ntiPhish1.0 and combines the feature vector with those 
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generated by html embedding learning architecture for 
phishing detection. Fig. 3 displays the architecture. 

A. Data Collection 
In this study, many phishing and legal websites were 

obtained from various sources, such as PhishTank, Alexa, 
VirusTotal, and others. Then, the collected data were sent to 
the HTML Embedding Learning Module and the Feature 
Extraction Module. The Feature Extraction Module uses the 28 
features that were proposed in AI@ntiPhish1.0, as shown in 
Table I. The HTML Embedding Learning Module uses an 
autoencoder-decoder framework to learn features that can 
effectively represent the HTML structure, and requires a large 
amount of the HTML structures for training. A total of 
10,000,000 HTML structural data were used to train the HTML 
embedding model. The training data that are used to develop 
the phishing detection model are associated with 25,000 
phishing sites and 100,000 normal sites. These training data 
were collected from 2020/12/01 to 2020/12/31. With respect to 
the testing data, 1000 data of phishing and normal sites were 
collected respectively from 2021/01/01~2021/01/10. 

B. Feature Extraction 
The two sources of the training features were the html 

embedding learning module and the feature extraction module, 
as shown in Fig. 1. After collection, the training data were sent 
to the html embedding learning module and the feature 
extraction module that were used by AI@ntiPhish1.0. The 
features that were used by AI@ntiPhish1.0 included a lexical-
based feature, a content-based feature, a host-based feature, and 
a link-based feature. The features that were most relevant were 
extracted using a mathematical model and statistical methods 
in the feature evaluation module. According to the analysis 
results of AI@ntiPhish1.0, the most effective feature 
information for training the phishing detection model were 
finally extracted. Table I presents the corresponding features. 
To increase the accuracy of detection of phishing kits by the 
model, the html embedding learning framework, which uses 
deep learning to learn the structure of html and extracts the 
feature vector that can be used to interpret the html structure 
through the final well-trained model, is proposed. Finally, the 
concatenation of html embedding features and the feature that 
was extracted by the AI@ntiPhish1.0 architecture is used to 
train the phishing detection model. 

Since the html structure can interpret the hierarchical 
relationship between html tags via using the DOM (Document 
Object Model), the html was converted into a DOM in the html 
embedding learning module. The same hierarchical 
relationship of the html tags was captured and concatenated 
into a sequence, as shown in Fig. 4. During training of the 
embedding learning module, the sequence was extracted from 
html in order, and then preprocessed by deduplication, feature 
evaluation, dimensional reduction, and other procedures. Since 
the html tags were hierarchically related to each other, the 
autoencoder-decoder architecture in the html feature extraction 
module used the sequence-to-sequence architecture with a 
Long-Short Term Memory Network (LSTM) for training. 
LSTM is an extension of the recurrent neural network, which 
can maintain information in memory for longer time period. 

The extracted html sequence has order-dependency between 
html tags in the sequence, so we choose to use the LSTM 
architecture. 

TABLE I.  PHISHING FEATURES 

Symbol Feature Symbol Feature 

F1 is_http_connection F15 null_a_tag 

F2 is_ip_address F16 script_block_rate 
F3 dots F17 style_block_rate 
F4 is_special_words F18 get_title_feature 
F5 url_linkin_num F19 is_login_form 

F6 url_traffic_rank F20 is_with_whois 

F7 get_kbytes F21 get_time 

F8 is_frame F22 is_redirect 
F9 is_meta_redirect F23 ipv4_numbers 

F10 is_meta_base64_red
irect F24 ipv6_numbers 

F11 same_extern_domai
n_script_rate F25 organization 

F12 same_external_dom
ain_link_rate F26 is_alias 

F13 same_external_dom
ain_img_rate F27 is_weird_serial 

F14 external_a_tag_sam
e_domain F28 get_day_age 

C. Data Generation 
The feature concatenating module aggregates the features 

that are extracted by html embedding extraction module and 
feature extraction module, and then sends the aggregated 
vector to the data generation module for data generation. In 
practice, the amount of data on legitimate websites is much 
larger than that on phishing websites. Therefore, to solve the 
problem of data imbalance, the Synthetic Minority Over-
sampling TEchnique (SMOTE) is used herein to generate more 
data. 

The theory of SMOTE is to find K nearest neighbor data 
points of the same category and draw lines among them, and 
then to generate similar data from the data points on the lines. 
The relevant formula is shown in (1). 

 Xnew = Xi + (X' - Xi) ․δ (1)  a  + b  = c. (1) (1) 

Xi is a data point that is randomly select from the minority 
class dataset; X' is the data point that is closest to Xi; δ is 
between 0 and 1. 

D. Learning Algorithm 
After data generation, all data and features are propagated 

to the intelligent learning module for learning. The intelligent 
learning module trains and optimizes the phishing detection 
model, based on the input data. The results of the analysis 
based on AI@ntiPhish1.0 reveal that the XGBoost model has 
substantially greater accuracy and stability in phishing 
detection than other algorithms. Additionally, the data that are 
generated using the SMOTE method effectively increase the 
accuracy of the detection model. In this research, all data 
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(including generated data) and features are trained and 
optimized through XGBoost, and the benefits of the html 
embedding learning module, proposed in this research, in the 
detection of phishing websites is evaluated. 

 

Fig. 4. Extracted tag sequence from DOM 

E. Evaluation Standard 
The following performance evaluation mechanism is used 

to evaluate the performance of the proposed model. The 
performance indicators are accuracy, precision, recall, and f1-
score. The calculation formula is shown in Table II. 

TABLE II.  EVALUATION INDICATORS 

Symbol Feature 
Accuracy (TP+TN)/(TP+FN+FP+TN) 
Precision TP/(FP+TP) 

Recall TP/(FN+TP) 
F1 score (2*Precision*Recall)/(Precision+Recall) 

IV. EXPERIMENTAL RESULTS 
A large amount of data from PhishTank, Alexa, and 

VirusTotal, were collected. The training and parameter 
selection of the detection model were performed using 100,000 
legitimate websites and 25,000 phishing websites. The training 
data were collected from 2020/12/01 to 2020/12/31. Since the 
training of the html embedding learning module is a form of 
unsupervised learning, 1,000,000 html structures were 
randomly selected. For the testing data of the model, we select 
1000 phishing websites and 1000 legitimate websites from 
2021/01/01 to 2021/01/10 in order to avoid duplicate data 
between training and testing, and also simulate testing 
circumstances in real-world. Table III and Table IV present 
detailed hardware configuration and parameter settings for 
training the html embedding. 

 Ten-fold cross-validation is used to evaluate the effect and 
benefits of the XGBoost algorithm with different numbers of 
estimators. The number of estimators that provides the best 
performance and the highest stability are selected. After that, 
we evaluate the performance of the model trained with the 
optimization parameters on the testing dataset. The experiment 
evaluates the model in the following four scenarios; XGBoost 

trained with 28 features, XGBoost trained with 28 features and 
html embedding features, XGBoost trained with 28 features 
and combined with the SMOTE method, and XGBoost trained 
with 28 features and html embedding features and combined 
the SMOTE method. 

TABLE III.  HARDWARE CONFIGURATION 

Symbol Feature 
CPU Intel(R)Xeon(R)CPUE5-2620 v4 

Memory / HDD / SSD 32GB/2TB/256GB 
Linux Ubuntu 16.04 
GPU 3*MSI GTX 1080Ti 11G 

TABLE IV.  PARAMETER OF HTML EMBEDDING LEARNING FRAMEWORK 

Symbol Feature 
Max sequence length 500 

Batch size 16 
Epoch 1000 

LSTM cell 64 
Learning rate 0.0001 

Dropout 0.6 
 This experimental design, involving four scenarios, not 
only reveals the impact of 28 features on the training of 
phishing detection models that were developed in recent years, 
it also provides insight into on the extent to which the html 
embedding features and SMOTE algorithm can improve the 
detection model. During the analysis, this study also evaluated 
the number of estimators. The number of estimators was 
adjusted from 5 to 50 in steps of five estimators and the 
accuracy of the model in each case was calculated. The orange 
line and the blue line in Fig. 5 represent the effects of adding 
and not adding html embedding features, respectively. 
According to the experimental results, for any number of 
estimators, the accuracy of the model with additional html 
embedding features significantly exceeds that without html 
embedding features. The gray line and yellow line in Fig. 5 
indicate that the use of the SMOTE algorithm for data 
generation is effective models that include and exclude html 
embedding features. The results of this analysis indicate that 
using the SMOTE algorithm can enhance model training and 
detection, as revealed by the blue and gray lines or the orange 
and yellow lines in Fig. 5. When the html embedding features 
are added and the SMOTE algorithm is used to generate data, 
the accuracy of the detection model can be improved again. 
The XGBoost model performs best in all of the scenarios when 
the number of estimators is 45. Fig. 6 displays a detailed 
performance evaluation of the XGBoost model with 45 
estimators. 

The extent to which the addition of an html embedding 
feature can improve the model training without use of the 
SMOTE algorithm is evaluated. The results show that when 
XGBoost is trained with html embedding features, the accuracy 
is increased from 74.80% to 79.40%, and Recall and Precision 
are also greatly improved. When the model training is 
conducted using the SMOTE algorithm for data generation, it 
can bring more help to the diversity of the model. According to 
the experimental results, using the SMOTE algorithm increases 
the accuracy by 10%. The method that was proposed by 
AI@ntiPhish1.0, which does not include the html embedding 
feature has an accuracy of 82%, which exceeds that of both 
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XGBoost with html embedding and that of XGBoost without 
html embedding. Finally, when html embedding features and 
the SMOTE algorithm for data generation are added, an 
accuracy of 87.2% is obtained; this is nearly 5% higher than 
the accuracy of the model that was trained by the 
AI@ntiPhish1.0 architecture. 

 

Fig. 5. Accuracy of XGBoost with imbalanced learning, and html embedding 

 

Fig. 6. Accuracy of XGBoost for testing data with imbalanced learning, and 
html embedding (Estimator=45) 

V. CONCLUSIONS 
This paper proposed a framework for phishing detection; it 

involves a feature extraction module that consists of two parts; 
one uses the 28 features that were proposed by AI@ntiPhish1.0, 
and the other is the html embedding feature. The html 
embedding feature is extracted from the sequence-to-sequence 
model that was composed of LSTM in the html embedding 
learning module that was proposed by this research. Finally, 
we train and evaluate the html embedding features generated 
by the html embedding learning module and the 28 features 
used by AI@ntiPhish1.0. The relevant experimental results 
show that when the html embedding feature is added to the 
trained detection model, its accuracy in detecting phishing 
websites is significantly improved. In the future, we can use 
different algorithms to perform the embedding. The embedding 
does not have to be performed using deep learning. Perhaps the 
same enhancement of accuracy can be achieved using 
traditional machine learning methods. In addition, we can also 
try to add the attributes of the html structure to the learning of 
embedding to enrich the html representation. In recent years, 

research into graph neural networks have accelerated. The html 
embedding that is conducted in this research can be combined 
with files or email applications to form a correlation graph. Our 
future research will focus on how to use GNN or GCN 
analytical methods to learn graphs or extend to detect attacks 
on various applications. 
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