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Abstract—With recognition of quantum computer’s enormous
computational ability, it is of paramount importance to develop
fault-tolerant quantum computing systems for their practical
use. Recently, it has been shown that fault-tolerant systems can
be achieved using a small set of basic quantum operations.
This, however, incurs technical difficulties in finding an optimal
sequence of basic operations toward a specific target computation
and may limit possible quantum computations. In this work, we
aim to achieve arbitrary target quantum computations under
the restriction of four universal quantum gates of Pauli-X, -Y, -Z
and SWAP. We develop two gate-sequence search methods based
on the fidelity measure and deep neural networks. We verify the
performance of our proposed methods through numerical results
comparing total search space and the number of searched nodes.

I. INTRODUCTION

Quantum computing exploits the quantum mechanical prop-
erties such as entanglement or superposition in computation
process. Such properties enable polynomial-time solution for
classical NP-hard combinatorial problems like integer factor-
ization [1] or black-box optimization [2]. With its potential
on such combinatorial problems, quantum computing has been
considered in various domains: RSA encryption-decryption in
cybersecurity or black-box optimization on big social data [3].

Classical computers have been used bits, which take either
0 or 1 exclusively, as a base unit for computation. In quantum
computers, a qubit which can be in superposition state of
0 or 1, is used as a base unit. Superposition state contains
probability information of 0 and 1 simultaneously, represented
as 2x1 matrix. As a single qubit can contain twice more
information than a bit, n qubits can contain information of
2™ values simultaneously with entanglement. To deal with
superposition and entanglement of n qubits, there are special
operations represented as a 2"x2" matrix. For example, the
single-qubit operation of Pauli-X gate replaces probability of
Is with Os, and Os with 1s, respectively, like the NOT gate in
classical bit-operation circuit. Such logical operations on the
qubits are called quantum logic gates.

The information capability of quantum computing is
promising and will facilitate computation-intensive tasks.

C. Joo is the corresponding author. This work is supported in part
by the NRF grant funded by the Korea government (MSIT) (No. NRF-
2021R1A2C2013065)

Hoon Ryu
Korea Institute of
Science and Technology Information
Daejeon, Korea
elec1020 @kisti.re.kr

213

Changhee Joo*
Dept. of CSE
Korea University
Seoul, Korea
changhee @korea.ac.kr

However, there are challenging reliability issues due to quan-
tum errors from decoherence and other quantum noises. Quan-
tum decoherence is caused by interaction between quantum
system and environment, causing quantum information lost.
Other quantum noises such as Johnson and shot noise are
related with temperature and tunnel junctions respectively [4].
To deal with such errors, Quantum Error Correction (QEC)
codes for detecting and correcting errors [5], [6] are proposed.
Quantum syndrome measurement (SM) is one of effective
schemes to tackle quantum errors by measuring parity over
multiple qubits [7], but it often consumes substantial amount
of time and resources, decreasing the overall performance.

Recently, the possibility to build a fault-tolerant quantum
computing system without SM has been sought, and shown
to be achievable if the quantum operations consist of a set of
finite standard gates [8]. This approach, however, has a couple
of technical challenges: (i) which set of standard gates will be
enough to realize an arbitrary quantum computation, and (ii)
how one can find a sequence of the gates for the given target
quantum computation.

In this work, we consider a set of 4 standard gates of Pauli-
X, -Y, -Z and SWAP in a 2-quit quantum system and address
the problem of gate sequencing, which can be formulated
as a combinatorial optimization problem. Considering the
exponentially increasing complexity in finding the whole gate-
sequence at a time, we take a step-by-step approach: find
one appropriate gate at a time and repetitively build a whole
sequence of gates. This approach fits well with reinforcement
learning (RL) techniques. In the literature, there have been
several interesting RL works for combinatorial optimization
problems, including local rewriting algorithm iteratively im-
proving sequences toward an optimal one [9], and the work
addressing Rubik’s cube problem along with A* search to
efficiently handle large search space [10].

In this work, we develop a deep-RL based framework to
accomplish an arbitrary target quantum computation by using
only 4 basic quantum gates of Pauli-X, -Y, -Z and SWAP. We
use A* search as in [10], but consider two different methods
to approximately measure distance between states: computing
fidelity and approximating the number of necessary gates
with neural networks. We demonstrate that several important
quantum gates, such as Controlled-Z (CZ) and CNOT, can
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be constructed with the 4 basic gates and their sequences
can be found with a small budget of computation. Although
the results are preliminary, our technique is promising in
automating the design of quantum circuits for fault tolerant
quantum computing system.

II. SYSTEM MODEL

We first describe the system settings and formulate the
problem. Then we develop our solution and verify it through
numerical results.

We consider a quantum system with 2 qubits, which have
four possible quantum states of |00), |01), |10), |11). A system
state can be represented by a complex-number amplitude
vector  (ago, o1, a10,a11), Wwhose element-wise square
corresponds to a distribution over the quantum states. Since
a quantum operation on a single qubit can be represented by
a 2x2 matrix, an arbitrary target quantum computation in the
two-quibit system can be represented as a 4x4 matrix. For
example, the frequently-used quantum gates of Controlled-Z
(CZ) gate and CNOT gate can be represented as follows:

100 O 1 0 0 0
010 O 01 00
CZ= 001 0Y) CNOT= 0 0 0 1
0 0 0 -1 0 010

In this work, given a target quantum computation as
a 4x4 matrix, we aim to find the shortest sequence of
quantum gates that is composed of only four unitary
basic gates of Pauli-X, -Y, -Z and SWAP operations.
1
0o ol ®

01 0 —i 1
SRS R
00 1

Note that Pauli gates are a single-qubit rotation gate and can
be applied to either of the two qubits. In two-qubit system, the
operation of a Pauli gate to one qubit can be expressed by a
Kronecker product with the 2x2 identity matrix. Considering
the combination of basic gates with two qubits, we have total
7 different basic gate operations: 3 Pauli gates to each qubits
plus one SWAP gate operation. Let X; denote the operation
of applying Pauli-X gate to qubit ¢ € {1,2}. Similarly, let
Y;, Z; be Pauli-Y and -Z operation on qubit ¢ € {1,2}. Also
let S;2 denote the SWAP operation that is applied to both
qubits as shown in (1).

Although any quantum circuit can be composed of the 7
basic gate operations [11], we also consider their rotation
phases. Since Pauli-X, -Y and -Z gates have physical meaning
of rotating particles, their rotating operations can be further
differentiated by rotation phase ¢. For example, with ¢ = ,
rotation gate matrices are as in (1), and with g, they become
the square root matrix to (1). we consider six rotation phases
for ¢; £, £5,£7%, which are frequently used to compose
many quantum gate operations including Hadamard gate and T
gate. Applying the six rotation phases to the 7 basic operations,
we have total 42 operation options' in the action space.

_01), SWAP=

'We note that the 42 options are in fact redundant and subject to further
optimization. For example, +7 and —7 means the same rotation by 7, and
+7 for SWAP is not widely used.

Our goal is to find the sequence of these 42 operation
options composed of 4 basic quantum gates, and accomplish
an arbitrary target quantum computation in the two-qubit
quantum system. We evaluate the performance of a sequence
by its length and fidelity. Fidelity measures the similarity
of two quantum computations (e.g., x and y), and defined
as |Tr(xTy)|?. In two-qubits system, the more similar the
matrices are, larger the fidelity is, up to 16. On the other
hand, a shorter length of sequence saves the execution time
and resources, and thus reduces the amount of noise as well
as the cost [12].

III. PROPOSED METHOD

We define an (intermediate) quantum computation as a state,
which can be represented by a 4x4 matrix. Starting from an
arbitrary quantum computation, also given as a 4x4 matrix,
we try to find a sequence of 42 operation options to reach the
identity matrix. Once we find the sequence, the reverse order
of the operations is the gate sequence that we are looking for.

We use A* search to find the sequence to the identity matrix.
It is a tree-based graph search algorithm that finds the shortest
path from the root node to a terminal node. In our case, each
node n is a state represented by a 4x4 matrix. We use ‘node’
and ‘state’ interchangeably. We define two sets of ‘open set’
and ‘close set’” where the former is the set of unexplored
nodes and the latter is the set of explored non-terminal nodes.
Starting from root node zy (which corresponds to the target
quantum computation), the search is guided by the value of
nodes f(x) in the open set, which is the sum of two functions
g(x) and h(z), where g(z) is the number of basic blocks up
to state x, and h(z) is an estimate on the number of basic
blocks from z to the terminal state ¢, i.e., the identity matrix.
We will describe two estimation methods for h(x) later. At
each step ¢, A* search chooses node z in the open set with
the lowest value f(z), create at most 42 nodes in the open set
(for each operation option), and then moves x to the close set.
The search repeats until we search a predetermined number
of nodes the terminal state. We use a batch setting, where [NV
nodes of lowest values f(n) are selected for expansion at a
step.

For the estimation of h(x), we use two different estimation
methods: fidelity-based estimation and neural networks (NN)-
based estimation.

A. Fidelity based value estimation

Fidelity is a measure about how similar two quantum
computations are. In the fidelity-based estimation, we use
h(zy) = wy - hy(xy), with hy(ay) = 16 — |Tr(xfmT)|2,
where x] is the conjugate transpose of state x;, and x7 is
the terminal state of the identify matrix. This, however, does
not tell us how many basic operations are required to reach z,
and instead, tell us how similar state z; is with the terminal
state. The weight factor wy = % is used to compensate the
differences between the number of basic operations and the
similarity.
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B. Neural network based value estimation

An alternative way to estimate h(x) is to make use of a
deep neural network (NN), to predict the number of necessary
basic operations to the terminal state from state x.

We design a neural network that consists of 3 linear layers
followed by 4 residual blocks. After each linear layer, a batch
normalization and a rectified linear unit are applied. It can be
denoted as a function parameterized by 0 as h,,(x;0). We
train the network to predict the number of basic operations
from z to the terminal state t. We generate training data as
follows. First we randomly choose an integer d € [1, 7], and
obtain a sequence of d basic operations randomly sampled
from 42 options allowing duplicates. Then we compute the
matrix of state z corresponding to the sequence, yielding
one sample data (z,d). By repeating this procedure, we can
synthesize labeled data (x,d) to train the neural network,
which is used to optimize parameter 6. After training, we set
h(l't) = hnn(xt; 9)

IV. NUMERICAL RESULTS AND CONCLUSION

In this section, we numerically evaluate our proposed algo-
rithms. We fix a length d of target quantum computation, and
generate a target quantum computation by randomly sequenc-
ing d basic operation options. Then we give the target quantum
gate matrix of the sequence as input of search algorithm, and
measure how many searches will be proceeded to find the
sequence. We repeat this for different 50 test sequences for
each of d € [1, 7] length. Additionally, we include the widely-
known gates of CZ and CNOT in our test. We use Python 3.8.5
with CUDA 11.2, CUDNN 8.1.1, and pytorch 1.8.0. At each
step of A* search, we selected 16,000 nodes of the smallest
f(+), and expand them.

We measure the number of searched nodes until the search
algorithms find the target quantum gate matrix. The results
in Fig. 1 show that our search algorithms with fidelity-based
estimation (green) and with NN-based estimation (purple)
find the target sequence with almost-linear complexity for
substantial sequence length (d > 5).

Next, we focus on the problem of finding sequences for
CZ (with d = 5) and CNOT (with d = 6) gates using the
fidelity-based method. For the same target quantum circuit,
there can be many different circuit implementations with
different sequence of basic operation options. We limit the
number of searched nodes to 107, and measure how many
sequences can be found under the constraint and how quickly
the algorithm achieves the first finding. The results are shown
in Fig. 2(a), which confirms that there are many different
circuit implementations (up to 36 for CZ). In comparison
between the fidelity-based and the NN-based algorithm, the
results show that, under the given constraint on the searched
nodes, the fidelity-based one can find more circuits and also
achieves the first finding earlier, at least for the CZ and CNOT
cases.

10% —— Total Search Space 3
Fidelity (Nodes) w1
10 —— Nerual Network (Nodes)

3 4 5
Circuit length (d)

Fig. 1. Performance of the proposed search algorithm with fidelity-based
estimation and NN-based estimation.
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Fig. 2. Performance comparison of fidelity-based estimation and NN-based
estimation in searching for 2-qubit quantum circuits of CZ (with d = 5) and
CNOT (with d = 6).
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