
Lightweight Collaboration of Detecting and Tracking Algorithm in
Low-Power Embedded Systems for Forward Collision Warning

Sunghoon Hong1,2 and Daejin Park2∗
1CARNAVICOM, Incheon, Republic of Korea

2School of Electronics Engineering, Kyungpook National University, Daegu, Republic of Korea
∗Correspondence to: Daejin Park (boltanut@knu.ac.kr)

Abstract—The cause of the majority of vehicle accidents is
a safety issue due to the driver’s inattention, such as drowsy
driving. A forward collision warning system (FCWS) can signifi-
cantly reduce the number and severity of accidents by detecting
the risk of collision with vehicles in front and providing an
advanced warning signal to the driver. This paper describes a
low power embedded system based FCWS for highway safety.
The algorithm described in this paper computes time to collision
(TTC) through detection, tracking, distance calculation for the
vehicle ahead and current vehicle speed information with a single
camera. Additionally, in order to operate in real time even in a
low-performance embedded system, an optimization technique in
the program with high and low levels will be introduced. The
system has been tested through the driving video of the vehicle
in the embedded system. As a result of using the optimization
technique, the execution time was about 170 times faster than
that when using the previous non-optimized process.

Index Terms—Forward collision warning system, object detec-
tion, low-power vision processing, hardware-software accelera-
tion

I. INTRODUCTION

An FCWS detects the risk of collision with the vehicle in
front and sends an alert signal to the driver in the form of an
audio alert, visual pop-up display, or other warning alert. An
FCWS can contribute significantly to reducing the number and
severity of driving accidents by sending an alert to the driver
about a possible impending collision if the vehicle gets too
close to the vehicle in front of it. TTC is computed based on
the speed of the current vehicle and distance from the vehicle
in front of it. To calculate the distance to the vehicle in front,
detection and tracking algorithms for the vehicle in front are
required. In vehicle detection, a powerful detection algorithm
such as deep learning cannot be applied in a low-performance
embedded system.

Therefore, in this paper, we use a machine learning tech-
nique for faster detection. The Haar feature-based cascade
classifier [1], which is a kind of machine learning, provides

This work was supported by the Technology Innovation Program
(P0013847, 20%, Development of automatic steering-based accident avoid-
ance system for electric-driven port yard tractors operating at low speed
(less than 30 km/h)) funded By the Ministry of Trade, Industry & En-
ergy(MOTIE, Korea) and Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Science and ICT (NRF-2019R1A2C2005099, 10%), Ministry of Education
(NRF-2018R1A6A1A03025109, 20%) and partly supported by Institute of
Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2021-0-00944, Meta-
morphic approach of unstructured validation/verification for analyzing binary
code, 50%)

effective object detection. However, these algorithms are also
limited in application to low-performance embedded systems,
so they need to be optimized. A vehicle tracking algorithm
is required to calculate the distance for the detected vehicle,
and a template-matching technique [2] was used for vehicle
tracking. To quickly detect a vehicle intervening in front, the
vehicle detection algorithm must always operate in real time.
However, if vehicle tracking and detection are performed at
the same time, there is a concern that the performance of
the FCWS will degrade because the computational complexity
increases.

In this paper, section II discusses the related works in
FCWS. Section III introduces a method of optimizing this
algorithm at the high and low levels, and shows that the
performance of FCWS is much improved compared with the
previous one in section IV. Finally the conclusion is mentioned
in section V.

II. RELATED WORKS

From a technological perspective on FCWSs, a fusion of
Radar and vision or Lidar and vision is an attractive approach.
In such a system, the Radar or Lidar gives accurate range
and range rate, while the vision detects the vehicle. However,
this solution is expensive and it is not easy to match the
sensors well. On the other hand, a single vision system has
the advantage in terms of cost, because it does not require a
separate sensor-matching operation, and is simple to install.
There are many ways to detect vehicles in a single vision
system. The method of detecting a vehicle using only edge
information [3] results in many false detections. To overcome
this, there is a deep learning technique by which vehicles are
detected using YOLOv3 [4].

Deep learning provides good detection performance, but the
disadvantage is that it cannot be applied to a low-performance
embedded system because a large amount of computation
is required. Machine learning techniques such as vehicle
detection using cascade classifier [5] are faster than deep
learning techniques are. As mentioned before, optimization
techniques are important to increase the operating performance
in low-performance embedded systems. There are various
optimization techniques. The high-level techniques have been
introduced such as loop optimization using loop unrolling and
response speed improvement using thread. However, because
there is a limit to optimization at a high-level, an optimization

159978-1-7281-6476-2/21/$31.00 ©2021 IEEE ICUFN 2021

technique at a low-level using single instruction, multiple data
(SIMD) or multi-core processing is required.

III. PROPOSED ARCHITECTURE

The final goal of FCWS is to send an alert signal to the
driver about a vehicle collision by calculating the TTC. Vehicle
detection, tracking, and distance calculation algorithms are
required to calculate TTC. Because the vehicle detection and
tracking algorithms require a lot of computational processing,
the embedded system needs to be optimized as shown in Fig.1.

Yes

No

Yes

Yes

No

No

Yes

No

Input image

Tracking mode?

Vehicle detection
(Dual core mode)

Vehicle detection
(Single core mode)

Vehicle tracking
(Single core mode)

Success?

Tracking mode
= false

Vehicle distance
calculation for TTC

Close?

END Alert to the driver

Forward detect?

Reference template
update of vehicle

Tracking mode = true

Fig. 1. FCWS flowchart

However, because there is a limit to optimization at the high-
level, a technique for optimizing at a low-level is required.
SIMD helps to improve operation speed by performing the
same operation on multiple data operands concurrently.

A. Vehicle Detection

1) Haar feature-based cascade classifiers: The vehicle
detection algorithm uses Haar feature-based cascade classi-
fiers. The Haar feature-based cascade classifiers are based on
machine learning and have the advantage of being lighter and
faster than deep learning. Haar features are a single value
obtained by subtracting the sum of pixels under the white
rectangle from the sum of pixels under the black rectangle just
like convolutional kernels. To extract only meaningful features
in vehicle detection, Adaboost is used. Finally, the cascade
function is trained from numerous positive images (images of
vehicles) and negative images (images without vehicles) in a
20x20 window size. It is then used to detect vehicles in other
images as shown in Fig.2.

Instead of applying all meaningful features to a 20x20
window, the features are grouped into different stages of
classifiers and applied one-by-one. If a window fails in the
first stage, it is discarded. If it passes, the second stage of
features is applied and the process continues. The window that
passes all stages is a vehicle region. However, the problem in
the cascade function is to repeat sliding and increasing all
windows in the input image. In fact, the window, such as the
background is completely different from the vehicle, so even
calculating it in the first stage of the cascade is inefficient.
The vanishing point helps to use only meaningful windows
for detecting vehicles in input images.

1 2 3T T

F F F
Vehicle region!

⋯
20 ⋯

480

640

20

T

All sub-windows

Reject sub-window

Further
processing

Fig. 2. Cascade windows sliding system

2) Vanishing point based cascade classifiers: A vanishing
point is a point on the image plane where the two-dimensional
perspective projections of mutually parallel lines in three-
dimensional space meet at one point. In the case of a detected
vehicle, because the coordinates of the part touching the
ground cannot exist above the vanishing point, it is calculated
by dividing the windows of 6 steps as shown in Fig.3.

20
60

20

60
480

640

Image resize

Vanishing point 20 ⋯
60

20

60

20
60

60

20
⋯

⋯

20
60

60

20
⋯

Fig. 3. Vanishing point based cascade system

If all windows of 6 steps are processed simultaneously
in one frame (image), the processing speed is slow and the
desired frame rate cannot be guaranteed. At a high-level, to
improve this part, one step per frame is calculated, that is, 6
frames are required to calculate all windows of 6 steps.

3) SIMD: SIMD processing elements that perform the same
operation on multiple data points simultaneously. Using this
method, vehicle detection speed is improved.

B. Vehicle Tracking

A vehicle tracking algorithm is necessary to continuously
track a previously detected vehicle. In the case of only detect-
ing without tracking, the pixel coordinates of region of interest
(ROI) for the detected vehicle are irregularly different. If the
coordinates are irregularly different, the distance value also
changes irregularly, so the TTC has a large error. To constantly
track the detected vehicle in front, a tracking algorithm is
required, and the vehicle tracking algorithm uses a template
matching technique in 20x20 window.

However, if only the detected vehicle in front is tracked,
recognition may be slow when a new vehicle intervenes.
In addition, if vehicle tracking and detection are computed

160

simultaneously, the computational complexity increases, and
vehicle tracking may fail in real time. To solve this problem,
we use a multi-core processor, one core computes to detect
the vehicle and the other core computes to track the vehicle.
When detecting a vehicle by using one core, the vehicle is
detected in 6 steps of the window using the existing method.

C. Distance Computation

The process of calculating the distance from the vehicle
ahead is the most important step to calculate the TTC. The
distance value is computed based on a pinhole camera model
as shown in Fig.4.

𝑥𝑥
𝑦𝑦

𝑐𝑐𝑥𝑥

𝑐𝑐𝑦𝑦 𝑝𝑝 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐

𝑋𝑋𝑐𝑐
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐

=
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

𝑡𝑡𝑥𝑥
𝑡𝑡𝑦𝑦
𝑡𝑡𝑧𝑧

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
1

𝑢𝑢
𝑣𝑣
1

=

𝑋𝑋𝑐𝑐
𝑍𝑍𝑐𝑐
𝑌𝑌𝑐𝑐
𝑍𝑍𝑐𝑐
1

𝑥𝑥
𝑦𝑦
1

=
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

𝑢𝑢
𝑣𝑣
1

𝑢𝑢

𝑣𝑣

𝑥𝑥

𝑦𝑦 𝑋𝑋𝑤𝑤

𝑌𝑌𝑤𝑤 𝑍𝑍𝑤𝑤

 𝐶𝐶

𝑋𝑋𝑐𝑐

𝑌𝑌𝑐𝑐

𝑍𝑍𝑐𝑐
𝑓𝑓1 𝑝𝑝

principal axiscamera centre

image plane

normalized image plane

pixel image plane

World space → Camera space
Camera space → Normalized image plane

Normalized image plane → Image plane

Fig. 4. Pinhole camera model

The pinhole camera model describes the mathematical re-
lationship of the projection of points in three-dimensional
space onto the image plane of an ideal pinhole camera. The
distance value is computed in the tracking step after a vehicle
is detected as shown in Fig.5.

𝑋𝑋𝑤𝑤

𝑌𝑌𝑤𝑤

𝑍𝑍𝑤𝑤

𝑢𝑢

𝑣𝑣

𝒗𝒗𝟏𝟏
𝒗𝒗𝟐𝟐 𝒀𝒀𝟏𝟏

𝒀𝒀𝟐𝟐

 𝐶𝐶(𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦, 𝑐𝑐𝑧𝑧) 𝑋𝑋𝑐𝑐

𝑌𝑌𝑐𝑐

𝑍𝑍𝑐𝑐𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(0, 0, 0)

Fig. 5. Forward vehicle distance calculation

Assuming that the camera has only the rotational component
of θ, a point in the world space will project to the normalized
image plane at a point, where a point in the normalized image
plane is given by the Equation 1.

u
v
1

 = s

1 0 0 tx
0 cos θ − sin θ ty
0 sin θ cos θ tz

X
Y
Z
1

 (1)

where θ is camera tilt angle and s is scale factor to project
a point in the world space onto the normalized image plane.
The rotation matrix (R) and the translation vector (T) are
transformation matrix that move a point from the world space
to the camera space as shown in Equation 2.

Pc = R(Pw − C̃) = RPw −RC̃ = RPw + T (2)

where C̃ is a central point of the camera in the world space.
Translation vector is computed by the Equation 3, 4.

T = −RC̃ (3)

tx
ty
tz

 = −

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

c̃x
c̃y
c̃z

 (4)

A point in the normalized image plan will be defined as
shown in Equation 5.

u
v
1

 = s

X − c̃x
Y cos θ − Z sin θ − (c̃y cos θ − c̃z sin θ)

Y sin θ − (c̃y sin θ + c̃z cos θ)

 (5)

When the Y2 is an origin point in the world space we will
define the v2 as shown in Equation 6.

v2 =
−c̃y cos θ + c̃z sin θ

−c̃y sin θ − c̃z cos θ
(6)

where c̃y is the camera height mounted on vehicle and c̃z is
the distance from the camera to detected vehicle. It is than
possible to compute the distance from camera to detected
vehicle as shown in Equation 7.

c̃z =
fy cos θ − (y2 − cy) sin θ

(y2 − cy) cos θ + fy sin θ
c̃y (7)

where fy is the camera focal length of y-axis and cy is
the camera principal point of y-axis. Y2 is a point of contact
between the vehicle and the road in three-dimensional space,
and the projected point on the image plane is y2. The distance
c̃z from the vehicle in front can be calculated from a point
where the vehicle and the road contact each other in the image
plane.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULT

In the test, the speed measurement of the algorithm was
compared through the driving video previously stored in the
LS1028A [6] board. The LS1028A is a processor made by
the NXP company and is equipped with two powerful 64-
bit Armv8 processors. The ARM NEON technology provided
in the Armv8 processor allows optimizations using SIMD’s
128-bit operation registers. Another feature is that the GPU is
built-in, but since most low-power embedded systems do not
have a built-in GPU, the GPU is not used in this paper. The
method used in the non-optimized cascade algorithm takes
about 5.192 seconds to detect a vehicle, but if optimized
through SIMD, it can be seen that the detection is faster to

161

about 4.416 seconds as shown in Fig. 6. The method used in
the optimized vanishing point based cascade algorithm takes
about 0.034 seconds and if optimized through SIMD, it can
be seen that the detection is faster to about 0.030 seconds as
shown in Fig. 7.

The total frame execution time of the 3356 frames according
to vanishing point based cascade using SIMD is about 170
times faster than non-optimized cascade algorithm as shown
in Fig. 8. Vehicle tracking can also been further improved
as a result of using SIMD as shown in Fig. 9. If there is
no vehicle in front or a new reference template is updated,
it can be seen that the execution time is zero because vehicle
tracking algorithm is not performed, only the vehicle detection
algorithm is performed. In this way, incorporating FCWS into
a vehicle is effective when using SIMD because low power
and processing speed are important.

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0 500 1000 1500 2000 2500 3000

Th
e

ex
ec

ut
ion

 ti
m

e
(m

s)

Frame

Cascade
Cascade using SIMD

Fig. 6. The execution time according to the number of frame in the non-
optimized or optimized cascade algorithm

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000

Th
e

ex
ec

ut
ion

 ti
m

e
(m

s)

Frame

Vanishing point based cascade
Vanishing point based cascade using SIMD

Fig. 7. The execution time according to the number of frame in the non-
optimized or optimized vanishing point based cascade algorithm

V. CONCLUSION

We have presented an FCWS based on fidelity controllable
optimization techniques using the consideration of trade-off
in terms of computation complexity and detection accuracy.
Image information coming from the single camera is used to
detect and track the vehicle. Existing methods had limitations

 0

 5000

 10000

 15000

 20000

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Cascade
Cascade using SIMD

Vanishing point based cascade
Vanishing point based cascade using SIMD

17427.0918

14821.9961

115.6982 102.3967

Fig. 8. The total execution time according to vehicle detection algorithms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500 3000

Th
e

ex
ec

ut
ion

 ti
m

e
(m

s)

Frame

Tracking
Tracking using SIMD

Fig. 9. The execution time according to the number of frame in the non-
optimized or optimized tracking algorithm

because they optimized only at the high-level without con-
sidering the low-level. The system has been tested through
the driving video of the vehicle, and it can be seen that
the processing speed of vehicle detection and tracking has
been improved compared with the previous method through
optimization. Through optimization, the power consumed by
the embedded system is also reduced, which helps with vehicle
fuel economy. As such, a low power based embedded system
is important.

REFERENCES

[1] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001,
vol. 1, 2001, pp. I–I.

[2] S. Omachi and M. Omachi, “Fast template matching with polynomials,”
vol. 16, no. 8, 2007, pp. 2139–2149.

[3] S. A. Nur, M. M. Ibrahim, N. M. Ali, and F. I. Y. Nur, “Vehicle
detection based on underneath vehicle shadow using edge features,” in
2016 6th IEEE International Conference on Control System, Computing
and Engineering (ICCSCE), 2016, pp. 407–412.

[4] S. Zhang, L. Chai, and L. Jin, “Vehicle detection in uav aerial images
based on improved yolov3,” in 2020 IEEE International Conference on
Networking, Sensing and Control (ICNSC), 2020, pp. 1–6.

[5] M. A. Zulkhairi, Y. M. Mustafah, Z. Z. Abidin, H. F. M. Zaki, and H. A.
Rahman, “Car detection using cascade classifier on embedded platform,”
in 2019 7th International Conference on Mechatronics Engineering
(ICOM), 2019, pp. 1–3.

[6] NXP, “https://www.nxp.com/docs/en/fact-sheet/ls1028afs.pdf,” in Layer-
scape LS1028A Family of Industrial Applications Processors.

162

