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Abstract—This study estimates the position and depth of the
user’s foot contacts of playing on a trampoline by acquiring
the image of the footprint shadow and processing it to enable
quantitative analysis of jumping (as a fitness exercise) or to
link it to computer games. First, a hardware prototype of a
jumping fitness monitoring system is proposed, consisting of
a trampoline, an upward-looking wide-angle fish-eye camera
module, and a signal processing embedded board. Second, image-
based three-dimensional foot contact position estimation (I3D-
FCE) algorithms are proposed, comprising the foot contact
position estimation algorithm in the transverse plane and the
foot contact depth estimation algorithm in the vertical direction.
The foot contact positions were estimated using the binary image
of the foot shadow obtained by extracting the binary masks of
the trampoline and foot. The foot contact depth was estimated
using the similarity ratio of the footprint shadow sizes. To verify
the usefulness of the proposed system and the accuracy of
the proposed contact position estimation algorithms, a series of
experiments were conducted using a robotic manipulator. The
experimental results show that the X and Y coordinates of the
foot contact position and the Z coordinate of the foot contact
depth were successfully estimated within an average error of
3.40 (mm), 3.26 (mm), and 4.49 (mm), respectively.
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I. INTRODUCTION

Trampolines are often used not only for recreational
activities but also for exercise and rehabilitation assistance
systems [1] [2] [3] [4]. Among them, jumping fitness is
a one-person trampoline exercise program performed with
music [5] [6]. In this program, the person exercising follows
the movements of a professional instructor to simultaneously
strengthen the person’s aerobic condition, muscle strength,
and balance. However, a trampoline equipped with a motion
recognition system that estimates the amount of exercise can
be enjoyed by individuals at home without the help of a
professional instructor. A home-based trampoline system can
quantify exercise intensity data based on motion concordance
between instructor and user, providing users with feedback
on exercise effectiveness [7]. This systems are in line with
online health care for COVID-19 prevention, and the demand

for online health care technologies is growing [8]. In order to
build user data that can be analyzed accordingly, user motion
information is required.
Various studies have reported on motion recognition of
people exercising on a trampoline. R. Kajastila and PW
Connolly conducted a study to recognize and analyze the
whole-body motion of a user with a camera [9] [10], and M.
Tiator carried out a study to link body motion recognized
with a camera and virtual reality (VR) system [11]. In
these studies, the whole-body motion was recognized with a
camera to determine the degree of motion correspondence,
concentrating on the linkage with VR data. To quantify the
exercise effects, T. Helten and D. Eager installed a three-axis
acceleration sensor at the waist of the user to analyze the
intensity and cycle of exercise [12] [13]. A study on the
classification of movements, such as walking and running,
using a distance sensor installed under a trampoline was
reported by H. Mori [7]. As such, existing studies have
recognized the motion of a person exercising on a trampoline
through a variety of sensor equipment to roughly classify
motion. However, providing more precise data on exercise
intensity and combining high-level game or entertainment
content in the VR environment requires a solution for a more
accurate position of motion analysis is needed.
In this paper, we propose an algorithm for estimating the
foot contact position in the transverse plane and the foot
contact depth in the vertical direction by processing the image
of the foot shadow contacting the trampoline. We present
a hardware prototype for a jumping fitness monitoring system.

II. IMAGE-BASED THREE-DIMENSIONAL FOOT CONTACT
POSITION ESTIMATION

A. System Overview

Fig. 1 shows a prototype of a jumping fitness system
employed with the image-based three-dimensional foot contact
position estimation (I3D-FCE) algorithm. This system includes
a jumping fitness trampoline (J6H130 FLEXI, W × D × H =
1360 × 1360 × 285 (mm), maximum load of 130 (kgf)) from
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Jumping Inc., an embedded board (Raspberry Pi 4 B, with a
Broadcom BCM2711 SoC 1.5 GHz Quad-Core 64-bit CPU,
and 4 GB of RAM) for real-time image processing, and a
wide-angle fish eye camera module (220° wide angle fish eye
lenses for Raspberry Pi Camera-LS-32220, 5 million pixels,
640 × 480 pixels, 60/90 fps). A single-camera module was
employed to simplify the distance measurement system and
accelerate the processing. The camera module was attached to
the bottom of the trampoline to capture the foot shadow. The
extracted shadows were used to estimate the contact position
and the depth of the foot.

(a)

(b)

Fig. 1. (a) Trampoline system equipped with a sensor at the center of the
camera fixture and (b) trampoline image captured with a wide-angle lens.

Fig. 2 shows a flowchart of the I3D-FCE algorithm. As-
suming X , Y , and Z are the actual contact positions on
the trampoline, X̂ , Ŷ , and Ẑ represent the contact positions
estimated by the I3D-FCE algorithm. Px and Py denote the
estimated positions in the pixel coordinate system, while x

′

and y
′

represent the positions converted from Px and Py ,
respectively, in the world coordinate system. z is the estimation

depth value computed from the similarity ratio formula. Fig.
2(a) illustrates the process of extracting Px and Py , and Fig.
2(b) shows the process of obtaining the estimated X̂ , Ŷ , and Ẑ
positions after extracting z

′
. Details are provided in Sections

B and C.

Fig. 2. X̂ , Ŷ , and Ẑ coordinate estimation sequence

B. Estimation of Two-Dimensional Contact Position in Trans-
verse Plane

The proposed method consists of extracting the trampoline
and foot masks and estimating the two-dimensional (2-D) foot
contact position (x

′
,y

′
).

In the trampoline mask extraction step, the red pad area in
Fig. 1(b) is determined as the region of interest (RoI) and is
appropriately extracted from the input image. The binariza-
tion method using R-channel has difficulty in separating a
bright background area. Therefore, the color space conversion
method expressed by (1) [14] was applied.
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In (1), Y indicates luminance, U indicates the color com-
ponent difference between the blue component and luminance
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(Blue-Y), and V indicates the color component difference
between the red component and luminance (Red-Y).
The RoI was determined with a trampoline mask by per-
forming Otsu-thresholding in the V-channel, where the red
color information was emphasized [15] [16]. Fig. 3 shows the
images acquired in each process.

(a) (b)

(c) (d)

Fig. 3. (a) Original RGB image; (b) YUV Image; (c) V-channel image; (d)
Trampoline mask extraction image.

Next, to extract the foot mask, the foot shadow must be
contrasted with the trampoline area. For this, we defined a
single-channel image, Grayadj in which the red information
was intensified. Assuming that GrayY , GrayU , and GrayV
are the single-channel images of Y , U , and V , respectively,
Grayadj can be defined by (2).

Grayadj = GrayV −GrayU +GrayY (2)

Fig. 4(a) shows the result of minimizing the color informa-
tion, excluding the trampoline, by removing the information of
GrayU with the blue color information highlighted in GrayV .
Next, adding the luminance GrayY produces an image in
which the contrast between the trampoline area and foot
shadow is more clear, as shown in Fig. 4(b). Subsequently, the
contrast ratio of Grayadj was amplified using contrast control,
and the foot mask was extracted through Otsu-thresholding.
Fig. 4 shows the images from each process.

During the 2-D position estimation, a binary image is an
output by applying (3).

Dst(x, y) = MaskFoot(x, y) ∩MaskTrampoline(x, y) (3)

Where x and y are the image coordinates; MaskFoot and
MaskTrampoline denote the foot mask and trampoline masks,
respectively, and Dst(x, y) is the result of the AND operation.
Image distortion is removed from the acquired binary image
using omnidirectional camera calibration [15] [16]. To

(a) (b)

(c) (d)

Fig. 4. (a) Image of minimized color information; (b) Grayadj -channel
image; (c) Image of contrast ratio amplification; (d) Image of foot mask
extraction.

increase the processing speed, calibration is performed on a
single-channel image rather than a three-channel image.
In the distortion-free image, the shadow is recognized as an
ellipse through contours [17] [18]. The center point of the
extracted ellipse is defined as the contact position (Px, Py).
The positions are converted into the world coordinate system
as (x

′
, y

′
) through pixel-size values. Using this, the 2-D

position can be finally estimated. Images for each step are
shown in Fig. 5.

(a) (b)

(c) (d)

Fig. 5. (a) Image of feet shadow; (b) Distortion-free image after calibration;
(c) Contour image; (d) Estimation image.
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C. Estimation of Contact Depth in the Vertical Direction

To estimate the contact depth of the foot in the vertical
direction, we introduced a similarity ratio formula. When the
user jumps on the trampoline, the foot shadow size observed
in the image changes. Knowing the actual size of the feet
and the free-standing height of the trampoline, the depth of
the trampoline can be estimated from the change in the foot
shadow size, as shown in Fig. 6. Specifically, it is determined
based on data that can be obtained in advance, such as the
height of the trampoline and the size of the user’s foot, and
the depth is estimated by using these data and the length of
the foot shadow long axis obtained from the contour.

Fig. 6. Schematic representation of estimating the contact position in the
z-axis.

The size of the user’s foot and distance between the camera
and trampoline are denoted by L and Z, respectively. If the
foot size extracted through the image is denoted by l, then z’
can be derived from (4) and (5).

L : Z = l : z
′

(4)

z
′
=

Z ∗ l
L

(5)

Using the similarity ratio formula, the foot contact depth
can be estimated using a single-camera module without stereo
vision. However, as the field of view varies with the distance
from the camera to the object, a distance-based correction for
each coordinate is required. Therefore, to correct the extracted
z’ value, the linear correction coefficients Wz and Bz were
calculated using portions of the data. Then, Ẑ was calculated
using the linear correction method expressed by (6).

Ẑ = Wz ∗ z
′
+Bz (6)

Subsequently, to obtain the linear coefficient of x′ and y′

for each Z, through linear correction of the coefficients, an
adjusted correction function Ẑ was obtained. Assuming that
Wx(Ẑ), Bx(Ẑ), Wy(Ẑ), and By(Ẑ) denote the corresponding
x′ and y′ correction functions forẐthe 2D position (X̂ ,Ŷ ) can
be calculated from (7) and (8).

X̂ = Wx(Ẑ) ∗ x
′
+Bx(Ẑ) (7)

Ŷ = Wy(Ẑ) ∗ y
′
+By(Ẑ) (8)

III. EXPERIMENT AND RESULTS

A. Experimental Setup

To verify the I3D-FCE algorithm, it is necessary to compare
the actual and estimated values of the trampoline and foot
contact position. In this study, to overcome the difficulty
in measuring the position of a user’s foot contact position,
experimental data were acquired using a manipulator (KUKA
LBR iiwa 14 R820, cooperative robot, payload of 140 (kfg),
precision of 2) that can quantify the motion position value
on a millimeter scale. The experimental data obtained using
the robot were used as the actual coordinates of the contact
position. Fig. 7 shows the experimental environment with a
trampoline and manipulator. A contact jig (round shape of 100
mm diameter) was attached to the manipulator to replace the
foot shadow. Considering the movable range and diameter of
the manipulator jig, a 2-D contact position was selected. The
trampoline center was set as the origin, and 2-D reference
positions were selected within movable distances of 0, 100,
200, and 300 mm from the origin. The 15 positions considered
in the experiment are shown in Fig. 7(c).

(a) (b)

(c)

Fig. 7. Experimental setting using a manipulator for (a) z = 0 and (b) z ¿ 0;
(c) Contact position scheme.

As the trampoline moves away from the center, the elastic
force of the trampoline decreases, causing a difference in
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the depth, which can be measured at each reference point.
Considering this, the contact images were measured at a
vertical depth of 0 and 30 mm at the red points; 0, 30, and 60
mm at the blue points; and 0, 30, 60, and 90 mm at the green
points. A total of 48 3-D references were selected, and an
experimental database was built by collecting 15 data points
per position. 30, 60, and 90 mm were set as the maximum
depth in each location because the trampoline could not be
pressed deeper owing to the load weight of the manipulator.
Data were measured 70 times at each of the 48 3-D reference
positions to establish an experimental database. From the
3,360 images, 960 were used to obtain the linear correction
coefficients for x, y, and z, and the remaining 2,400 were
used for the experiment.

B. Results
The error between the actual position and the estimated

position, which was obtained through the manipulator and
I3D-FCE algorithm, was calculated using the root mean square
error (RMSE) given in (9). Pi denotes the actual contact
position (X-Y -Z); P̂i denotes the position estimated by I3D-
FCE (X̂-Ŷ -Ẑ)

RMSE =

√√√√ N∑
i=1

(Pi − P̂i)
2

N
(9)

Table I presents the error in the 3-D point and each
coordinate axis. It can be observed that the error rate is slightly
higher in the z-axis than in the x- and y-axes, confirming that
the estimation for the z-axis affects the overall RMSE.

TABLE I
STANDARD ERROR OF X-Y-Z ESTIMATION POSITION

RMSE (mm)

Min Max Average

X-Y-Z 1.13 17.61 4.86

X 0.01 23.84 4.75

Y 0.02 16.01 3.90

Z 0.07 22.63 4.41

Table II presents a more detailed analysis of the average
error corresponding to the distance between the origin and
2-D contact point. Similarly, Table shows the average error
corresponding to the distance of the vertical depth from the
origin. In Table , the points at distances of 0 and 100, 200,
and 300 mm from the origin correspond to the green, blue,
and red points shown in Fig. 7(c), respectively. Table II shows
that the largest error occurs at a point located 300 mm from
the origin.

This trend can also be observed in Table III; the error is
relatively large at depths of 0 and 30 (mm). This error includes
the error in the area outside the trampoline, corresponding to
the red dot shown in Fig. 7(c).

TABLE II
STANDARD ERROR CORRESPONDING TO X-Y DISTANCE

Point
Color

Distance
(mm)

RMSE (mm)

X Y Z X-Y-Z

Green 0.0 1.42 2.22 4.16 3.16

100.0 3.14 3.20 4.03 3.82

Blue 200.0 5.63 4.40 3.84 4.96

Red 300.0 9.96 6.11 6.53 8.69

TABLE III
STANDARD ERROR CORRESPONDING TO Z DISTANCE

Distance
(mm)

Average RMSE (mm)

X Y Z X-Y-Z

0.0 4.97 4.47 4.38 5.21

30.0 5.84 4.39 4.75 5.48

60.0 3.97 3.73 4.64 4.50

90.0 3.23 1.95 3.43 3.37

The relatively large number of errors in the verified outer
part of the trampoline relates closely to the trampoline
structure. A force applied in the vertical depth direction at the
outer part of the trampoline often causes interference between
the trampoline and foot masks, which can lead to relatively
large errors compared to those at other positions. In addition,
an omnidirectional camera calibration process was performed
to compensate for the characteristics of the wide-angle lens;
but errors may occur in the external area because there are
limitations due to the use of a wide-angle range.
However, jumping fitness exercises are normally performed
at the center of the trampoline because the user needs to
exercise in the most stable position. Therefore, it can be
considered that the position estimation error for the outer
exercise position is within the acceptable range for the
jumping fitness system.
Nevertheless, to link the exercise effectiveness with various
content such as VR and games in the future, high position
estimation accuracy is required, so a more accurate position
estimation needs to be performed at all positions that users
have contact with.

IV. CONCLUSION

In this study, we proposed the I3D-FCE algorithm
to estimate the coordinates of the foot contact position
during trampoline motion. First, a prototype of a jumping
fitness system that included a jumping fitness trampoline, an
embedded processing board, and a wide-angle fish-eye camera
module was constructed. Then, the 2-D contact position in
the transverse plane was estimated using the binary image
of the foot shadow acquired by extracting the binary masks
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of the trampoline and foot. The contact depth was estimated
using the similarity ratio of the shadows. A manipulator was
employed to verify the estimated value of the foot contact
position experimentally. The X and Y coordinates of the
foot contact position and the Z coordinate of the foot contact
depth had estimated average errors of 4.75 (mm), 3.90 (mm),
and 4.41 (mm), respectively. The 3-D estimation position had
an average error of 4.86 (mm).
Based on the location estimation algorithm developed in this
study, we plan to research advanced algorithms suitable for
jumping fitness exercises by obtaining more location data
and using various jig sizes. Further work includes building
a more realistic environment, improving location accuracy
through experiments, and adding the weight of humans to the
estimated position value to calculate the amount of exercise
and calories burnt, and linking them to jumping fitness games
and VR content.
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