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Abstract—In software defined wide-area networks, the number 

and location of controllers in the optimization model have a 
significant impact on network performance. Compared with the 
traditional single-objective model or quasi-multi-objective model 
that can be transferred to the single-objective model, multi-
objective models can provide more comprehensive solutions to the 
problems by concerning controller deployment at one time, which 
makes network operators use different solutions to accommodate 
various scenarios better. In this paper, an actual multi-objective 
model is built to optimize controller deployment by considering 
deployment cost, load difference, and propagation delay. To solve 
this model, we propose an algorithm by specially designing the 
hybrid initialization method to generate an initial population that 
balances diversity and convergence. After that, we design the 
mechanisms of encoding conversion, information entropy 
awareness, hybrid evolution, and perturbation modification. 
These mechanisms are particularly constructed for the proposed 
algorithm to solve the problems in the evolution process and to 
improve the  global search ability of the algorithm for obtaining 
superior Pareto sets. Finally, we validate the effectiveness and 
generality of the proposed algorithm by comparing its Pareto sets 
with those of other algorithms in Internet2 OS3E network from 
various aspects. 

Keywords—Multi-Objective Optimization (MOO); Pareto Front 
(PF); Software Defined Networking (SDN); Controller Placement 
Problems (CPPs); Hybrid Evolutionary Algorithm 

I. INTRODUCTION 
The Wide-Area Network (WAN) based on Dense 

Wavelength Division Multiplexing (DWDM) has the advantage 
of high transmission capacity. However, with the development 
of mobile services and the popularity of 5G technology, Internet 
applications are gradually migrating to the cloud. The cloud data 
center network needs the WAN with high bandwidth, low 
latency, and high quality, which leads to increasing obvious 
defects such as long cycles of WAN services provisioning [1]. 
As a result, Software Defined Networking (SDN) is applied to 
meet the requirements of WAN services and operations [2], in 
which the solution to Controller Placement Problems (CPPs) is 
of great significance. 

Ahmadi et al. [3] used Non-dominated Sorted Genetic 
Algorithm (NSGA) to optimize the load balance of controllers 
and reduced the propagation delay, which is classified into the 
delay between controllers, as well as the delay between 
controllers and switching nodes. Liao et al. [4] computed the 

mutation probability of the evolutionary algorithm by particle 
swarm optimization and used the algorithm to decrease the 
propagation delay and optimize the load difference of the 
controllers. However, the models in both studies ignored the 
deployment cost, leading to the reduction in the practicality of 
results due to high cost. Reference [5] used improved NSGA 
(NSGA-II) to optimize the load balance and the average network 
connectivity, providing an idea to reduce the deployment cost. 

Pareto-based Optimal COntroller-placements (POCO) [6] is 
a framework to solve the CPPs. Samir et al. [7] and Jalili et al. 
[8] embedded different evolutionary algorithms into POCO and 
obtained some favorable solutions to the CPPs in a network. 
However, the optimization objectives of POCO are not 
comprehensive, with only two objectives optimized at the same 
time, and the efficiency of its solving algorithm needs to be 
improved. 

In order to obtain the Controller Deployment Schemes 
(CDSs) of CPPs, the optimization models need to be built first 
and solved by optimization algorithms. This paper solves CPPs 
by an actual multi-objective optimization model and relevant 
algorithm to obtain a set of optimal CDSs with different 
objectives such as cost, load difference, and latency. Therefore, 
the operators can select the most suitable CDS according to the 
needs and preferences of actual application, so as to achieve the 
best balance between cost and multiple network performance. 
However, the ordinary optimization models and their 
corresponding solving algorithms tend to focus on the tradeoff 
between different network performance, such as latency and 
load balance, without incorporating the impact of cost on the 
deployment scheme, which results operators from obtaining 
lower-cost CDSs with excellent network performance. 

This paper improves the existing models and algorithms to 
adapt to realistic CDSs. The multi-objective optimization model 
is built to optimize the control network by jointly optimizing 
propagation delay, load difference, and deployment cost. As a 
tri-objective optimization model, the solution to the model is 
more challenging compared to the optimization models in [6][7]. 
The proposed model is solved by the Multi-Objective Hybrid 
Evolution with Information Entropy Awareness (MOHEIEA), 
aiming to improve the global efficiency of solutions through 
various improvement mechanisms. 

The rest of this paper is organized as follows: Section II 
presents the multi-objective model and analyzes the holding 
relationship among the objectives. Section III introduces the 
algorithm designed specially and analyzes the effectiveness of 
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various improvement mechanisms. Section IV evaluates the 
solution performance of MOHEIEA from multiple perspectives. 
Finally, a conclusion is given in Section V. 

II. PROPOSED MODEL 
This section combines the needs of operators and users with 

the constraints of network resources, from which three 
optimization objectives are abstracted, including the 
propagation delay of the control network, load difference, and 
deployment cost. Finally, the constraints are added to build the 
model. The proposed model and the designed algorithm of our 
work are presented in Fig. 1. 

Fig. 1. Model and algorithm used in this paper 

A. Symbols list 
Table I gives a description of the notation in the model. 

TABLE I.  SUMMARY OF NOTATIONS AND SYMBOLS 
Notation Definition 

( ),=G N E  G is the network topology, where N denotes the network 
node set, and E represents the directly connected link set. 

v The propagation speed of optical signals in the network, 
which equals 2×108 m/s. 

m The total number of controllers in the network of a CDS. 

[ ]i mw=W  
W represents the controller load set, where wi means the 
number of switching nodes in the network managed by the 
SDN controller i. 

[ ]i Np=P  P means the controller position set, and if a SDN controller 
is deployed on node i, pi=1, otherwise pi=0. 

[ ]ij N Nc
×

=C The control set is C, and if switching node j is controlled by 
the SDN controller of node i, then cij=1, otherwise cij=0. 

 = [ ]ij N Ns
×

S  The shortest distance set is abstracted as S, where sij denotes 
the shortest distance between node i and node j. 

1 2,β β  Weight factor of propagation delay. 

B. Optimization objectives 
As shown in (1), the optimization objective of the model is 

to minimize the deployment cost, load difference, and 
propagation delay. The deployment cost is defined in (2), which 
represents the number of controllers in the network. In (3), the 

load difference represents the extreme difference in the number 
of switching nodes controlled by the controllers. The equation 
(4) shows the propagation delay obtained by weighting the 
maximum propagation delay between controllers and switching 
nodes as well as the maximum propagation delay between 
controllers. Both propagation delays in (4) are important in the 
control network, so β1=β2=0.5 is set to measure the control 
network delay in a comprehensive way. 

 ( ) ( ) T
M D Lmin F x f , f , f=  (1) 

 Mf m=  (2) 
 

1 2 1 2D i ji , , ,m j , , ,m
f max w min w

= =
= −

⋯ ⋯

 (3) 

 ( ) ( )1 2
L ij ij ij i ji , j i , j

f max s c max s p p
v v
β β

∈ ∈
= ⋅ ⋅ + ⋅ ⋅ ⋅

N N
 (4) 

Increasing the number of controllers can reduce the distance 
between the controllers, the distance between the controllers and 
the switching nodes they control, and the load on high-load 
controllers. It is beneficial for propagation latency and load 
difference optimization, but it leads to relatively higher 
deployment costs. The increase of the load difference means that 
the maximum number of switching nodes controlled by a single 
controller increases, reducing deployment cost and propagation 
delay. For reducing the propagation delay, the distance between 
the controllers and the switching node needs to be reduced, so it 
is necessary to increase the number of controllers or the load 
difference. In summary, the three objectives in this model are 
interlocked and form an actual multi-objective optimization 
model, which can be solved by multi-objective evolutionary 
algorithms. 

C. Restrictive conditions 
Constraints are used to restrict the properties of the final 

CDSs, and the mathematical expressions of the limits in the 
model are given below: 

 1

N
ii

p m
=

=  (5) 

 
1

1     1 2N
iji

c , j , , , N
=

= = ⋯  (6) 

 2
Nm ≤  (7) 

Equation (5) indicates that the number of controllers in the 
network is m, and each node deploys one controller at most. 
Equation (6) means that each switching node can be controlled 
by only one controller. Equation (7) is used to limit the 
deployment cost, denoting that the number of controllers is not 
greater than half of the number of nodes in the network. 

III. ALGORITHM AND ANALYSIS 
Since the CPPs are NP-hard and difficult to solve [9], we 

propose MOHEIEA and analyze its performance in this section. 
Different improvement mechanisms are added at different stages 
of the evolution in MOHEIEA, aiming to improve the global 
optimal seeking ability of the algorithm to obtain a superior 
Pareto set. 

A. Coding design 
Coding design includes the coding method and the encoding 

conversion mechanism. The former is applied to the coding of 
individuals, while the latter is used to solve the problems that 
arise in evolution. 
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1) The coding method 
The binary fixed-length encoding is used in our work, as 

shown in Fig. 2 , the length of individuals is the number of 
network nodes |N|, and encoded content is used to mark the 
deployment status of the controller, where 1 indicates that the 
controller is deployed at that node and 0 is opposite. 

Fig. 2. Individual encoding method 

Furthermore, each switching node is controlled by the 
closest controller. 

2) The encoding conversion mechanism 
The ordinary evolutionary algorithm lacks search ability, and 

its offspring are generated by random crossovers or mutations 
from parents, which is not conducive to population search for 
superiority solutions in the neighborhood of the current solution. 
In addition, binary coding suffers from the Hamming cliff 
problem because the Hamming distance between some 
individuals is too large to be spanned by ordinary crossover and 
mutation, which dramatically limits the optimization capability 
of the algorithm.Therefore, the encoding conversion mechanism 
is added to MOHEIEA to cope with the problems. 

 1 1 1

1 1 1

 ,   
 ,   

i i i

i i i

g b g b b
b g b b g

−

−

= = ⊕


= = ⊕
 (8) 

Suppose the binary coding of an individual is BN=b1b2∙∙∙b|N|, 
and GN=g1g2∙∙∙g|N|, i=2,3, ∙∙∙, |N| means the corresponding Gray-
coding. The way of mutual conversion is shown in (8). 

Fig. 3. Encoding conversion mechanism 

Fig. 3 presents an example of the encoding conversion 
mechanism. Converting individuals to Gray-coding before the 
crossover and mutation operations can amplify the practical 
significance of the correspondence between individuals with 
small coding differences and overcome the Hamming cliff 
problem. As a result, the algorithm's optimization-seeking 
ability is enhanced. Moerover, individuals are convertedto 
binary coding after the crossover and mutation operations to 
facilitate the calculation of optimization objectives and the 
selection of individuals. 

B. Population initialization 
MOHEIEA generates the initial population through cluster 

initialization and uniform initialization, aiming to balance the 
diversity and convergence of the initial population. 

1) Cluster initialization 
Cluster initialization generates the number of cluster centers 

randomly according to their range, and then obtains the location 
of cluster centers by the k-means clustering algorithm. Finally, 
the initial population is obtained. 

The clustering initialization uses various attributes of the 
network, aiming to reduces the propagation delay and obtain the 
initial population with an optimal objective value. However, the 
cluster initialization has difficulty in accommodating the 
diversity of populations, and often produces the population with 

high similarity, leading to local optimal solutions when the 
population evolves. 

2) Uniform initialization 
Uniform initialization generates the number of controllers 

randomly according to their range, then deploys the controllers 
at random nodes in the network to get an individual, and finally 
repeats the above operations and obtains the initial population 
with more diversity. 

Uniform initialization makes the initial population 
distributed as uniformly as possible throughout the variable 
space to increase the diversity of the population. However, this 
initialization mechanism does not incorporate the properties of 
the network, and therefore the obtained initial population can 
hardly have a superior objective value. 

C. Information entropy awareness mechanism 
The information entropy of the Pareto set in the objective 

space can be used to perceive the measures like the distributivity 
and convergence of the current Pareto set, so as to select the most 
appropriate evolutionary method in the hybrid evolutionary 
mechanism. 

The information entropy is calculated by the influence 
function and the density function. The influence function is used 
to measure the influence degree between any two individuals in 
the Pareto set, and the commonly used Gaussian influence 
function [10] is presented in (9): 

 ( )( )
( )

2

2 
21     1 2

2

i jd x ,x

i jd x ,x e , i , j , , ,σψ
σ π

−

= = Ω⋯  (9) 

where σ means the standard deviation, and setting σ=1 enables 
the value of the influence function to be in an appropriate range, 
d indicates the Euclidean distance of individuals xi and xj in the 
objective space, as well as the size of the Pareto set is |Ω|. 

The density of an individual is the sum of the influence 
function values of all individuals in the Pareto set for the 
individual. If Ω denotes the Pareto set and the size of the Pareto 
set is |Ω|, then the density value of the individual y is D(y) [10], 
as given in (10). 

 ( ) ( )( )1 ii
D y d x , yψ

Ω

=
=  (10) 

To get the information entropy, the objective space should 
be normalized and divided into several grids. If the number of 
objects is three, then the space can be divided into ɑ1×ɑ2×ɑ3 grids. 
If there are |Ωijk| non-dominated solutions in the (i, j, k) grid 
space, the density function [10] (12) and information entropy 
[10] (13) are calculated as below: 

 ( )1
ijk

ijk y
D D yΩ

=
=  (11) 

 
1 2 3

1 2 31 2 31 1 1

ijk
ijk a a a

z z zz z z

D

D
ρ

= = =

=
  

 (12) 

 ( )1 2 3

1 2 3 1 2 31 2 31 1 1

a a a
z z z z z zz z z

H Inρ ρ
= = =

= −    (13) 
The better the distributivity of the Pareto set, the larger the 

information entropy. Since the three optimization objectives are 
in the same priority, ɑ1, ɑ2, and ɑ3 should be set to the same 
value. Moreover, too large or too small values of ɑ1, ɑ2, and ɑ3 
are not conducive to measuring the distributivity of the Pareto 
set. In our work, ɑi=4, i=1,2,3, is set to complete the grid 
division according to the distributivity of the Pareto set. 
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D. Hybrid evolutionary mechanism 
In this paper, setting the population size Num=200, the 

maximum generation Gmax=100, the crossover probability 
Pc=0.95, and the mutation probability Pm=0.3 according to 
simulations, we can get a better Pareto set in a short time. 
MOHEIEA contains two evolutionary methods to adapt to 
population characteristics. On the basis of Multi-Objective 
Evolutionary Algorithm based on Decomposition (MOEA/D), 
the evolution focuses on enhancing the convergence of 
populations, while the evolution based on NSGA-II aims at 
improving the distributivity of populations. 

1) Evolution Based on NSGA-II 
The encoding conversion mechanism is added to this 

evolutionary method before and after the evolution to enhance 
the optimal seeking ability. The evolution based on NSGA-II 
first obtains the mating pool by tournament selection and selects 
the next-generation population based on non-dominated sorting 
and crowding degree after crossover and mutation operations. 
The non-dominated sorting operation can promote the selection 
of individuals with superior objective values, while the 
calculation of the crowding degree facilitates the choice of 
individuals with better distributivity. This evolution method not 
only improves the distributivity of the Pareto set, but also 
preserves the better feasible solution in the next-generation 
population to reinforce the optimization capabilities. 

2) Evolution Based on MOEA/D 
This evolutionary method adds the encoding conversion 

mechanism before and after evolution. Through the differential 
evolution formula in (14), individuals r1 and r2 in the 
neighborhood and individual p in the Pareto set are randomly 
selected for evolution. After the multipoint mutation, the 
original individual r is replaced by the Chebyshev 
decomposition. 

 ( ) ( )1 1 2 2offspring r F r r F p r= + ⋅ − + ⋅ −  (14) 

where (r1−r2) represents the perturbation to generate a random 
evolutionary direction that can prompt the population to jump 
out of the local optimum and avoid evolutionary retardation. 
(p−r) can provide a better evolutionary direction for individual 
r. To prompt the population to evolve in a superior direction, 
F2>F1 should be ensured, where F1=0.3, F2=0.6 are taken as the 
best according to the results. The evolution based on MOEA/D 
can search for better feasible solutions in the neighborhood, 
enhancing the convergence of the Pareto set. 

3) The combination of evolutionary methods 
In summary, the two evolutionary methods are combined in 

the evolution process through information entropy. The Pareto 
set of the current population has poor distributivity in the 
objective space when the obtained information entropy is less 
than 0.4. Therefore, the evolution based on NSGA-II is used to 
improve the distributivity of the Pareto set when the value of 
information entropy is less than the threshold τ (τ = 0.4). 
Otherwise, the evolution based on MOEA/D is applied to 
promote the convergence of the Pareto set. 

E. Perturbation modification mechanism 
The number of controllers is more than half of the number of 

nodes in illegal individuals, which have low practicality and are 

likely to have negative impact on the evolution of the population. 
Therefore, after each generation of evolution, the illegal 
individuals in the population are modified according to the 
procedure shown in Mechanism. 

Mechanism: Perturbation modification mechanism 
Input: |N|: number of nodes, x: illegal individual 
Output: x': legal individual 
1. /* Compute the coefficient ϛ of the illegal individual x. */ 
2. Compute ϛ = 1/sum(x); 
3. /* Generate perturbation vector. */ 
4. vp = rand(1, |N|); 
5. for i = 1 to |N| do 
6.  /* Correct the ith gene locus of the perturbation vector. */ 
7.  vp(i) = vp(i) > ϛ ? -1 : 0; 
8.  /* Modify the ith gene locus of the illegal individual. */ 
9.  x'(i) = vp(i) + x(i); 
10.  x'(i) = (x’(i) == -1) ? 0 : x'(i); 
11. end for 
12. Get the modified legal individual x'. 

The rules for modifying vp are presented by Mechanism. 
Since each gene locus of vp obeys a uniform distribution of (0,1), 
then the distribution rule of the number of -1 is in (15). 

 ( ) ( ) ( )1 ,    0 1 2k N kN
kP k C k , , , , Nς ς

−
= ⋅ − ⋅ = ⋯  (15) 

It can be seen from (14) that if the number of -1 in vp 
conforms to the Bernoulli distribution of degree |N|, then its 
mathematical expectation is E=|N|∙(1−ϛ). The increase in the 
number of 1 in the illegal individual leads to the reduction of its 
coefficient ϛ. Therefore, the number of -1 in its perturbation 
vector is increased, and the number of 1 in the individual in the 
correcting process is further reduced. Therefore, the mechanism 
can modify the illegal individual into a better ordinary individual 
according to the features of the illegal individual. 

F. Algorithm procedure of MOHEIEA 
The MOHEIEA generates an initial population with a 

balance of diversity and optimization objectives by the two 
initialization methods. Various mechanisms such as encoding 
conversion, information entropy awareness, hybrid evolution, 
and perturbation modification are added to MOHEIEA to 
improve the performance of solutions. 

1) Time-complexity analysis 
The time complexity of MOHEIEA is denoted as 

O(|N|∙Gmax∙Num) that dominated by |N| and evolutionary process, 
in which Gmax is the maximum generation and Num is the 
population size. 

2) Space-complexity analysis 
In model (1-7), at most 2|N|  controllers are supposed to 

deploy in the network if the number of deployed controllers is 
denoted as m. When 1≤m≤ 2|N| , the objective space consists 

of 12
1

2
2

|N|
N

m

m
| N |

−

=

 
≈ 

 
  distinct solutions, which is a large 

number even for small networks. For example, for Internet2 
OS3E topology [3] with 34 network nodes, the number of 
solutions is 233≈8.59×109. However, MOHEIEA can obtain a 
superior set of CDSs through population evolution. The space 
complexity of MOHEIEA is denoted as O(|N|∙Num) that 
dominated by |N| and the population. 
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Algorithm: MOHEIEA 
Input: G: the network topology; Num: population size; Pc: crossover 
probability; Pm: mutation probability; Gmax: maximum generation; λ: weight 
vectors set; δ: neighborhood size 
Output: Ωfin: The final Pareto set 
{Step I: Initialization} 
1. /* Generate initial population. */ 
2. P1 with size Num/2 is generated by cluster initialization. 
3. P2 with size Num/2 is generated by uniform initialization. 
4. The combined populations P1 and P2 are the initial populations. 
{Step II: Evolution} 
5. for i = 1 to Gmax do 
6.  /* Information entropy awareness mechanism. */ 
7.  Calculate the information entropy of the current Pareto set; 
8.  /* The encoding conversion mechanism. */ 
9.  The coding method of all individuals within the population is 

converted to Gray-coding. 
10.  /* Hybrid evolutionary mechanism. */ 
11.  if information entropy > τ 
12.   Perform evolution based on MOEA/D; 
13.  else 
14.   Perform evolution based on NSGA-II; 
15.  end if 
16.  /* The encoding conversion mechanism. */ 
17.  The coding method of all individuals within the population is 

converted to binary coding. 
18.  /* Perturbation modification mechanism. */ 
19.  Modify all illegal individuals in the current population into 

legal individuals by Mechanism. 
20. end for 
{Step III: Stopping Evolution} 
21. Output Ωfin; 

IV. EXPERIMENTAL STUDY 
This section evaluates the performance of MOHEIEA and 

compares it with MOEA/D, NSGA-II, and algorithms in [7]. All 
algorithms were implemented in MATLAB and run on an Intel 
Core i5 (3.30 GHz) with 8 GB of memory. In the experiments, 
Internet2 OS3E were chosen, which are widely used in current 
studies [3][4]. For simulation purposes, nodes with unclear 

locations in the network were removed. The distance between 
two nodes was calculated by Haversine's formula [7]. 

A. Performance metrics of Pareto set 
Since this multi-objective model focuses on a practical 

problem and the reference set is not available, the performance 
metrics without a reference set were chosen, which include 
Hypervolume, Spacing, and Spacing metric [10]. 

1) Hypervolume: It is used to measure the hypervolume 
enclosed by the Pareto front and the reference points. The larger 
its value, the better the comprehensive performance of the 
algorithm. 

2) Spacing: It indicates the standard deviation of the 
minimum distance from each Pareto solution to other Pareto 
solutions in the Pareto set. The smaller the spacing value, the 
better the uniformity of the Pareto set. 

3) Spacing metric: It measures the distributivity of the 
Pareto set. The smaller the spacing metric value, the better the 
distributivity of the Pareto set. 

B. Presentation of the Pareto set 

The Pareto sets of MOHEIEA and other comparative 
algorithms are calculated, compared, and shown by various 
measures in this subsection. The comparative algorithms in this 
paper are the algorithm in [7], NSGA-II and MOEA/D. The 
algorithm in [7] is based on the POCO framework, which 
facilitates finding the Pareto set for the bi-objective CPPs 
models. NSGA-II and MOEA/D are two multi-objective 
evolutionary algorithms that are mostly used for solving MOO 
problems due to their excellent solution performance. 
MOHEIEA builds on NSGA-II and MOEA/D to evolve 
populations for features of the current Pareto set and thus to 
better favour population evolution. 

Fig. 4. Pareto sets of MOHEIEA and other algorithms (Internet2 OS3E) 
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Fig. 4 shows the Pareto sets solved by MOHEIEA and other 
algorithms in the Internet2 OS3E network, which has 34 nodes 
and 42 links. Fig. 4(a) shows that the Pareto front solved by 
MOHEIEA is closer to the ideal points, and MOHEIEA can 
obtain a solution with lower propagation delay than other 
algorithms when the deployment cost and load difference are the 
same. 

According to Fig. 4(b), the distributivity and convergence of 
the Pareto set obtained by MOHEIEA are better than those by 
other algorithms when the deployment cost is determined 
(m=5).To show the results more intuitively, Fig. 4(c) presents 
the fitted surface of the Pareto set. Compared with the fitted 
surfaces of NSGA-II and MOEA/D, the fitted surface of 
MOHEIEA is closer to the ideal point, indicating that a Pareto 
set with better convergence can be obtained by MOHEIEA. 

To increase the credibility of the results, the contours of the 
fitted surface are shown in Fig. 4(d). We can draw the conclusion 
that the contours of MOHEIEA approximate the contours of 
other algorithms when the maximum propagation delay is short. 
However, the contours of MOHEIEA are better than the 
contours of other algorithms when the maximum propagation 
delay becomes long. The result indicates that MOHEIEA can 
significantly reduce the propagation delay of the control network 
at the same deployment cost and load difference. 

MOHEIEA avoids falling into local optimums while 
searching for optimal feasible solutions near the current Pareto 
solution through such improvements as encoding conversion, 
information entropy awareness, hybrid evolution, and 
perturbation modification. As a result, MOHEIEA has a strong 
global and local optimality-seeking ability. 

To quantitatively compare the performance of the Pareto sets 
obtained by MOHEIEA and the performance of those by other 
algorithms, three performance metrics of the Pareto sets in Fig. 
4(a) and Fig. 4(b) are listed in Tables II and III. 

Table II proves that MOHEIEA can reach the optimum in 
all three metrics, which indicates that the Pareto front obtained 
by MOHEIEA achieves excellent results in uniformity, 
distributivity and convergence under the three objectives. As 
shown in Table III, MOHEIEA is not optimal in all three 
metrics, but it makes a good tradeoff between the three metrics 
and still achieves optimal results by combining all optimization 
metrics. This indicates that MOHEIEA can find the Pareto set 
with superior performance under two objectives. 

TABLE II.  PERFORMANCE INDICATORS OF PARETO SET IN FIG. 4(A) 

Algorithm Performance Indicators 
Hypervolume Spacing Spacing metric 

MOHEIEA 0.8603 0.0659 0.6466 
MOEA/D 0.7260 0.0796 0.6863 
NSGA-II 0.6688 0.0771 0.6922 

TABLE III.  PERFORMANCE INDICATORS OF PARETO SET IN FIG. 4(B) 

Algorithm Performance Indicators 
Hypervolume Spacing Spacing metric 

MOHEIEA 0.6711 0.0663 0.2938 
MOEA/D 0.5566 0.0875 0.8240 
NSGA-II 0.6402 0.0567 0.6186 

Reference [7] 0.6507 0.0753 0.4246 

According to the simulation results of Internet2 OS3E 
network, it can be found that MOHEIEA can obtain the Pareto 
set with better convergence and distribution than MOEA/D and 

NSGA-II. Firstly, MOHEIEA improves the algorithm's 
optimization-seeking ability when solving the Hamming cliff 
problem through the encoding conversion mechanism. 
Secondly, the information entropy awareness mechanism is 
used to measure the distributivity of the current Pareto set and 
select a more appropriate evolutionary method. The hybrid 
evolutionary mechanism can select the most suitable evolution 
according to the characteristics of the current Pareto set, which 
has more advantages than MOEA/D and NSGA-II. The 
perturbation modification mechanism drives the population to 
evolve toward a lower deployment cost, which facilitates the 
applicability of the CDSs. By combining the above factors, 
MOHEIEA can obtain the set of CDSs with better convergence 
and distribution in network. 

V. CONCLUSION 
The proposed MOHEIEA obtains excellent solution 

performance through improved mechanisms such as encoding 
conversion and can be used to solve CPPs. Compared with other 
algorithms, MOHEIEA has better generality and global search 
capability of finding Pareto sets with superior distributivity, 
convergence, and uniformity. 
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