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Abstract—Proactive content caching in self-driving cars poses
several challenges, particularly because of the dynamic nature of
content popularity, heterogeneity in user preferences, and privacy
issues for data sharing. To tackle these issues, in this paper, we
study the significance of proactive content caching strategy in
self-driving cars for optimizing content retrieval cost and quality-
of-experience (QoE) with the edge cloud infrastructure. To that
end, we propose a low-complexity content popularity prediction
mechanism in a federated setting where we extract local content
popularity patterns in the self-driving cars using long short-term
memory (LSTM)-based prediction mechanism. Then, we leverage
the privacy-preserving distributed model training paradigm of
Federated Learning (FL) to create a global model by applying
the Federated Averaging (FedAvg) algorithm on local LSTM
models to create a regional content popularity prediction model.
With extensive simulations on real-world datasets, we show the
obtained global model helps to improve the local cache hit ratio,
cache space utilization, and correspondingly minimize latency
overhead at the self-driving cars.

Index Terms—proactive content caching, edge computing, fed-
erated learning, recurrent neural network

I. INTRODUCTION

As self-driving car technology has advanced, the likelihood
of autonomous public vehicles running on roads is no more
a far-fetched reality. Consequently, passengers will find them-
selves with a good deal of free time within the driverless car
[1]. In this regard, taking advantage of the in-vehicle info-
tainment service provided by on-board unit (OBU) installed
in self-driving cars [2], passengers can now spend their time
working and being entertained, or just relaxing. However,
OBU can only cache a subset of contents; thus, not every
passenger will instantly receive the requested contents. For that
reason, self-driving cars must download these contents from
the nearby edge cloud which is also known as Road Side Unit
(RSU), or the core cloud. If the requested content is cached
in an exceedingly connected RSU, it may be downloaded
directly from the RSU. Otherwise, the self-driving cars have
to request the contents from other (nearby) self-driving cars
or RSUs, or cloud until the content is found and retrieved,
leading to a higher content delivery delay. One approach to
mitigate the possible delay is use OBU to proactively cache the
contents following the historical content popularity patterns.
However, the popularity of content is dynamic, and relying
only on historical contents of a particular OBU will not be
sufficient to guarantee Service Level Agreements (SLAs) and
Quality-of-Experience (QoE) for seamless media streaming.
That is why we need to consider the content popularity patterns
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of other OBUs as well. However, due to privacy concerns,
OBUs will not share their data. Thus, considering the limited
cache capacity of OBU, efficient proactive content caching
strategy is imperative [3], [4]. In fact, proactively caching the
expected content to be requested at the selected OBUs can
significantly reduce the peak load on edge networks, i.e., when
the OBU receives the request from passengers, the content
can be retrieved directly from the cached memory of OBU
instead of accessing from the wireless edge network. Fairly,
the prediction paradigm is based on the assumption that the
demand trend of an infotainment content of a self-driving car
is predictable to some degree.

There are several ongoing research works on proactive con-
tent caching strategies [4]-[9]. The authors in [6] concentrated
primarily on the relationship between the content and its recent
access pattern. However, they don’t use any prior knowledge of
content popularity distribution or any dedicated model training
phase, which they believe is obsolete or biased. The authors in
[10] configured the number of chunks to be cached by using
the popularity count of contents. Similarly, the authors of [11]
concentrate on context-aware proactive caching, in which they
learn context-specific content popularity online by constantly
analyzing context details of linked users, updating the cached
content, and then monitoring cache hits. Similarly, a large
amount of data is used in [12] to estimate contents popularity,
and then, strategic contents are cached at the base stations
to improve user’s cost for content retention and backhaul
offloading. In [4], the authors use passenger’s features, which
are obtained using deep learning techniques to obtain caching
decisions for infotainment contents in self-driving cars.

The recent research works, and those mentioned above,
mainly focus on centralized content caching. However, the
traditional centralized approach is privacy sensitive, and not
all users may want to share their data with the core cloud, or
the edge cloud. And even if some users share data, the model
may only work for a certain number of users, which leads to
generalization issues, i.e., the trained model will not satisfy
all user’s preferences. To tackle these issues, in this work,
we leverage the distributed privacy-preserving model training
paradigm of federated learning [13] to develop a proactive
content caching scheme, where self-driving cars will train their
local dataset using LSTM models and share model parameters
to the server to get a generalized global model.

The main contributions of the paper are summarized as
follows:

o We propose a federated learning-based popularity predic-
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tion mechanism in self-driving cars for proactive content
caching, where data (i.e., content popularity patterns) will
not be directly shared among OBUs, but rather predicted,
following the decentralized model training approach of
federated learning.

« We build a global model for content popularity prediction
exploiting LSTM models. Particularly, LSTM models are
trained first to capture local content popularity prediction
at the self-driving cars; and then, the local parameters of
LSTM models are shared with the RSUs to build a global
model in an iterative fashion.

o We show the proposed methodology captures person-
alized preferences of passengers in building a content
popularity distribution.

o We show extensive experimental results based on real-
world Movie Lens datasets [14] to verify that our pro-
posed approach outperforms other well-known reference
algorithms in terms of the cache hit efficiency, content-
retrieval cost, and user satisfaction level.

The rest of the paper is organized as follows. Section
IT presents our proposed system model of proactive content
caching at self-driving car using federated learning, discuss
overview of solution approach, and present preliminaries of
adopted federated learning and LSTM model. Section III dis-
cuss the details of our proposed approach, and present a low-
complexity algorithm. Section IV provides the performance
evaluation of the proposed approach and compares it with
other traditional approaches using real-world datasets. Finally,
Section V concludes this work.

II. SYSTEM MODEL

The system model of our proposed method is shown in
Fig. 1. In our system model, we consider self-driving cars
as public vehicles connected to RSUs via radio links. The
passengers in the car request various infotainment contents,
such as movies, music videos, and so on. Particularly, these
requested contents differ according to the location, time of
the request, and other features. Besides, the content request
patterns may be similar or different depending on the pas-
senger’s situation. The OBU of the car store these content
request patterns as historical data. As a matter of fact, we
observe OBU is responsible for recognizing these content
request patterns. And to utilize these patterns, we first use the
concept of LSTM, whose input be the sequential historical
contents of OBU and the popularity count of each content.
Here, the LSTM model predicts each content’s next popularity
count, which helps OBU determine the top most popular
content recommended to the passengers. However, content
popularity changes over time; that is why, using the historical
content of a particular OBU is not be sufficient for satisfying
passenger’s requests. Therefore, we consider content request
patterns of other self-driving cars as well to appropriately
characterize popularity patterns and address content request
delivery. However, content request patterns include passenger’s
personal information, and taking privacy into account, other
OBUs will not share their popularity request pattern directly.
To address this challenge, we exploit the concept of federated
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Fig. 1: System Model

learning in which each OBU only shares its model parameters
rather than the raw data itself; and hence, significantly elimi-
nating the privacy concern. Finally, the global model built after
decentralized training over LSTMs help each OBUs to predict
the popular contents of the overall area. Then, OBUs can
recommend these top most popular contents. However, given
limited storage space of OBUs, it is impossible for OBUs to
cache all of the recommended contents; thus, it only caches
the popular contents in a proactive manner according to its
cache size.

In the following subsections, we will discuss the details of
federated learning and LSTM models involved to execute the
proposed method.

A. Preliminaries: Federated Learning

Federated Learning (FL) [15]-[17] is a distributed machine
learning approach that enables training on a large corpus of de-
centralized data residing on devices like mobile phones. FL is a
promising approach for privacy preserved edge intelligence in
distributed scenarios. While in conventional machine learning,
all training data is collected at a centralized curator, federated
learning addresses the privacy concerns to a large extent and
reduces data transmission cost by distributing the training work
to users themselves. Particularly, the local training is executed
by users on their data, which usually adopts the gradient
descent optimization algorithm. In a federated learning frame-
work, users keep their data with themselves but send the server
parameters for aggregation. This provides a parallel scheme for
users to learn a global model collaboratively concerning their
data privacy. The general optimization problem is as follows

[18], [19]:

1 K 1

Fw) = K Zk:l Fi(w); Fi(w) = nik Z(wi’yi)epk ll(w()l’)
where [;(w) is the loss of prediction for some input-output
pairs (x;,y;) in the training data samples z; and labels y;,
respectively, w is the model parameter, K is the total number
of clients, Dy, is the set of indices of data points on client k
with n, = |Dg| and D the total data samples. Each client k
updates local model w* following stochastic gradient descent
to solve 1 in a distributed manner.
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B. LSTM Model

LSTM is a Recurrent Neural Network (RNN) that can
perform learning patterns on data with long dependent periods
[20]. RNNs are mainly designed to capture the temporal
dynamics of sequential input data. In our proposed approach,
we feed the timestamped historical content popularity counts
of each self-driving car as the input of the LSTM model to
predict the sequence of next popular contents to be proactively
cached for recommending and serving those infotainment
contents to the passengers.

In the following section, we present our proposed solution
approach.

III. PROPOSED METHOD FOR PROACTIVE CONTENT
CACHING

This section proposes the deployment design of federated
learning-based proactive content caching in self-driving car.
We first present the details of processes involved in predicting
the content popularity count in our proposed system using
LSTM model. Then, we discuss how self-driving car will
proactively cache the popular content exploiting the global
model obtained after model averaging.

At first, self-driving cars get content requests from various
passengers based on their location. Primarily, the car’s OBUs
need to have those contents stored to serve requested contents
to passengers. However, the dynamic nature of the user’s
preferences and the limited storage capacity of OBUs, not
all requested contents are cached at the OBU; therefore,
passengers will not instantly receive the requested contents.
For that reason, OBUs must download these contents from
RSU proactively. Also, because of the high amount of content
requests, it is impossible to cache all the replicas in OBUs.
Therefore, OBUs must select the contents which may be
proactively cached to reduce the high delivery delay. In
Fig. 2, we show an illustration of the proposed mechanism

Algorithm 1 LSTM-embedded Federated Averaging for
Proactive Content Caching Strategy.

: RSU executes:
. Initialization: initialize model parameter wj;
: Output: global model w?, content popularity count;
V;: total associated cars with the RSU at time t;
for each round t = 1,2, ... do

for Vk € V, in parallel do

wy,; < LOCALUPDATE(k, w{);
end for

wt+1 A Zk B wt+1’
10: end for

D AN A AR

12: LOCALUPDATE (k, w) :
on car k.

13: for each local epoch E do

14: ny: is the training data;

15: B: is the local minibatch size used for the car updates;

16: n: is the learning rate;

17: B + (split ny into mini-batches of size B);

18: for b € 5 do

19: Wiy wipy — VL (w;b);
model with global model w.

20: end for

21:  return wy,, to RSU;

22: end for

> Execute local model updates

> Update LSTM

for infotainment content recommendation at the client-level.
The OBU of self-driving cars (clients) have historical contents
stored in them. These sequential historical contents have a
specific content popularity pattern in the form of content
request count. Using these historical data and considering the
limited storage of each OBUs, we find top-n most popular
contents in all clients. In our case, popular contents are the
contents with a maximum number of request count, i.e., the
popularity count. This popularity count determines popular
content in each client. In the first step, we use the historical
contents and their popularity count as an input feature, and
then train our LSTM model to predict the popularity count
of the next popular content; each client’s OBU may choose
to cache and recommend it to the passengers. However,
caching only popular content won’t be enough as the contents
requested depend on passenger’s preferences and changes
over time. In addition to this observation, given the clients
and the passengers’ high mobility, it is impractical to solely
adopt content popularity patterns in an individual OBU as a
critical metric to design proactive content caching strategy
at the client-level. Hence, we need to build a generalized
observation of popular contents from other client’s OBU.
However, due to privacy reasons, clients may not share their
content request pattern. For that reason, we use the concept
of federated learning, as discussed before, to share the local
model parameters of OBUs for more generalized view of
content request patterns. To that end, in the second step,
after local model training in each client, model parameters
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Algorithm 2 Local Content Caching Strategy in Self-Driving
Cars.

//local content caching strategy//;
2: wY: Final global model;
V. total associated cars with the RSU at time ¢;
4: Output: local content popularity count, fop- n contents to
be proactively cached;
for Vk € V; do

6: Use w? to obtain local content popularity count;
for each contents predicted by the model do
8: if contents are not available in OBU then
fetch contents from RSU and cache them;
10: end if
end for
12: end for

are sent to the server', i.e., RSU for model aggregation. In
our proposed approach, the purpose of LSTM is to predict
next popular content using the content popularity count, and
hence, the third step is to predict the popular infotainment
contents from the local data. Finally using these predicted
popularity patterns, in the fourth step, OBU can recommend
the infotainment contents to the passengers.

Fig. 3 shows the server-side illustration of the proposed
mechanism. Here, in the first step, RSU aggregates and av-
erages the model parameters obtained from the clients using
FederatedAveraging (FedAvg) algorithm [18]. After FedAvg,
a global model is obtained in the second step, which is
sent to each client for local updates in the third step. This
process in step four continues until the global model converges
to expected model accuracy. After downloading the global
model from the server, each client in the fifth step updates
the LSTM model to predict the next popular contents to be
cached proactively. In this manner, we obtain a generalized
viewpoint of popular infotainment contents. In the sixth step,
each client’s OBUs check if these contents are available or
not; if yes, it serves the content requested by passengers. Else
sends a request to nearby RSUs for proactively caching those
contents to serve passenger’s requests. The details of the sever-
side, client-side mechanism are presented in Algorithm 1 and
Algorithm 2 respectively.

IV. SIMULATION RESULTS

We implemented the proposed algorithms in Tensorflow
[21]. We have used the real-world movielens 25M (ml-25m)
dataset [14] for our experiments, which contains 25000095
ratings and 1093360 tag applications across 62423 movies.

In Fig. 4, we compare our proposed approach with the
traditional centralized approaches. The first is a centralized
approach without sharing data (Centralized w/o sharing data),
in which local data is not shared with other clients’ OBUs
or the server. Clients will use their local dataset to train the
model, and the local model obtained after training will predict
the next popular content from the local dataset itself. The

'Note that the term “server” and “Edge cloud” means the same and are
used interchangeably in this work.
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of cache hit ratio by changing communication round between
five random clients and a server.

second is a centralized approach with sharing data (Centralized
w/ sharing data), where clients share their data with the server,
and the server stores the data centrally. The server will use
these data to train the model, and the final model will predict
the next popular contents from the pool of stored contents.
That way, each client will get the requested content instantly.
For doing so, we set a small vehicular network of density 5
that share their local data with the computing server (nearby
RSUs). As all the data is stored in the RSUs, this approach
outperforms Centralized w/o sharing data method, which
performs poor due to limited data. However, this approach
poses some privacy issues due to data sharing requirements.
In this regard, we observe our proposed approach outperforms
the centralized approach without sharing data, and shows
competitive performance in terms of cache hit ratio against
centralized w/ sharing data. Furthermore, it is intuitive that
relaxing cache space constraint improves cache hit ratio as
more contents are cached.

Fig. 5 shows the performance of our approach for the
number of communication rounds, i.e., the global iteration.
Here, we evaluated the cache hit ratio for the cache size
of 300MB for each client’s OBU. The local model training
epoch in each client is 20. We observe the cache hit ratio
increases with the increase in communication round, as more
rounds of communication improves the model performance.
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Similarly, in Fig. 6, we evaluate the proposed method in
terms of a cache hit ratio for varying vehicle density in range
[2,10], and with fixed communication rounds. Here, vehicle
density is the number of clients participating in the federated
learning process. We can observe with the increase in vehicle
density, the cache hit ratio also increases. This is expected
as improved participation increases the global model accuracy
which eventually minimizes the content prediction error.

In Fig. 7, we observe the cache hit ratio increases with the
increase in the number of local model training epochs for fixed
number of communication rounds. This is a typical character-
istic in the FL setting: as the number of local epochs increases,
the accuracy of local model also increases, which results in
the increase of cache hit ratio due to high-quality global
model. In Fig. 8 and Fig. 9, respectively, we observe our
proposed approach outperforms the traditional baselines [22]
Least Recently Used (LRU) and Random Replacement (RR)
in terms of a cache hit ratio by 50% and 61% respectively,
and content retrieval cost by 37.78% and 46% respectively,
for different cache sizes at the client’s OBU. In fact, clients
can make caching decisions based on the knowledge of a
global model and local data; and thus, achieves a lower content
retrieval cost as compared with the conventional approaches
that make content replacement decision.

Finally, in Fig. 10, we measure the user satisfaction level
for different cache sizes of the client’s OBU. Here, the user
satisfaction level captures the heterogeneous preference of
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passengers for infotainment contents and is defined as the
number of satisfied passengers served by the OBU following
the proposed proactive content caching scheme. We measure
the user satisfaction ratio by the sum of requests served for
passengers to the total number of requests. We observe the
user satisfaction levels increases for large cache sizes because
the OBU can cache more contents proactively. Furthermore, as
observed in Fig. 11, the average user satisfaction level using
the proposed method outperforms the baselines (LRU and RR)
for different cache sizes in the client’s OBU. This is because
the proposed method can efficiently predict content popularity;
and thus, we observe an increase in the cache hit probability.

V. CONCLUSION

Content Caching in the self-driving car is a promising so-
lution to cope with the exponential growth of content requests
from the diverse set of passengers, where contents are usually
placed on OBUs for fast and repetitive access. However, OBUs
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have limited cache space and cannot appropriately decide the
contents to cache due to the dynamic arrival of passengers’
requests for random contents. In this work, we have studied
the problem of proactive content caching at the self-driving
car. In doing so, we have proposed a federated learning-based
mechanism for proactive content caching in the self-driving
car. Particularly, we have used the LSTM-based mechanism
for predicting local content popularity patterns, and sending
model parameters to the edge cloud for creating a global model
via model aggregation. With extensive simulations on real-
world datasets, we have shown that the proposed mechanism
can jointly improve cache hit ratio, optimize cache utilization,
and minimize the content retrieval cost as compared with the
traditional cache replacement strategies.
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