
Balancing the Detection of Malicious Traffic in
SDN Context

Bruno Salgado Machado
Centro Algoritmi &

Universidade do Minho,
4710-057 Braga, Portugal

Email: a74941@alunos.uminho.pt

João Marco C. Silva
INESC TEC,

HASLab & Universidade do Minho,
4710-057 Braga, Portugal

Email: joao.marco@inesctec.pt

Solange Rito Lima, Paulo Carvalho
Centro Algoritmi &

Universidade do Minho,
4710-057 Braga, Portugal

Email: {solange@, pmc@ }di.uminho.pt

Abstract—Huge efforts and resources are spent every year on
prevention and recovery of cyberattacks targeting users, ser-
vices and network infrastructures. Software-Defined Networking
(SDN) is a technology providing advances to the field of security
with the ability of programming the network, promoting high-
performance solutions and efficient resource utilization at low
costs, as the use of specialized hardware is avoided. The present
paper aims at exploring the SDN paradigm to develop an SDN-
based framework for prevention and mitigation of malicious
attacks throuhgt the network. The framework design and pro-
posal has concerns regarding the efficient use of network and
computational resources, distributing the inspection of suspicious
flows by distinct Intrusion Detection Systems. For this purpose, a
load-balancing strategy for traffic inspection is devised, allowing
to balance both the usage of resources and the analysis of traffic
flows. In this way, this paper also sheds light on the usage of
OpenFlow messages to build distributed SDN-based applications
with the mentioned properties.

I. INTRODUCTION

The Internet has led to the establishment of a digital society
where everything is connected and accessible from anywhere.
However, the current Internet architecture is complex and
hard to manage due to its ubiquity and heterogeneity. In
particular, security is introduced via expensive, specialized
and hard-to-configure equipment (middleboxes) such as In-
trusion Detection System (IDS), Intrusion Prevention System
(IPS), firewalls, among others. In this context, the Software-
Defined Networking (SDN) concept arises as an appealing
solution to this problem, by providing the ability to program
the network through a centralized network control and by
decoupling the control and data planes. The centralized and
cost-effective architecture inherent to SDN improves network
visibility, helping to achieve efficient resource utilization and
high performance. In addition, it is possible to recreate mid-
dleboxes used in standard networks with software, making
their adoption and integration easy and affordable. Based on
programming, network security can be enhanced by quickly
diverting or analyzing malicious traffic.

OpenFlow is an SDN standard network communication
protocol that allows the SDN controller to interact with the
forwarding plane of network devices, such as switches and
routers. An OpenFlow switch has one or more flow tables
composed of various rules called flows. Each flow matches a
specific set of packets and performs actions on them, such as

forward, drop, adjust. With the ability to interact directly with
the network resources through OpenFlow, a real-time overview
of the network can be obtained at any point. This, coupled with
the ability to program the network, can be integrated with stan-
dard security and load balancing software to obtain a robust
solution regarding network efficiency, resource utilization, and
security.

Striving to create an efficient solution to improve network
security, this paper explores the above concepts to propose a
scalable solution using SDN. Taking advantage of distributed
IDSs, the proposed security framework, totally based on soft-
ware, integrates load balancing algorithms and severity alerting
priorities to improve scalability and security efficiency. The
proof-of-concept resorts to distinct Mininet network schemes
to analyze and attest the impact of the framework on improving
network security and resource utilization. In addition, this
paper clarifies the relevance and usage of ofp_packet_in,
ofp_flow_mods, ofp_group_mod OpenFlow messages to build
distributed SDN-based applications.

This paper is organized as follows: Section II presents
relevant OpenFlow concepts to fully understand the proposed
framework implementation; Section III discusses the related
work regarding security frameworks and load-balance strate-
gies; Section IV presents the proposed SDN-based security
framework, its design goals, architecture and main compo-
nents; Section V provides the proof-of-concept evaluating the
framework performance; and Section VI concludes this work.

II. BACKGROUND CONCEPTS

SDN relies on a network architecture where the forwarding
functionalities are removed from the network devices. Instead,
these functions are handed out to a remote control, decoupling
the control and data plane [1]. The controller is capable of
handling the entire traffic stream and individually deciding
on routing, flow forwarding, and packet filtering through
predefined instructions [2]. Although initially explored for
packet forwarding, network security has also emerged as a
promising field for SDN, as discussed in Section III.

A. OpenFlow

OpenFlow is a southbound Application Programming Inter-
face (API) and is considered one of the first SDN standards,

106978-1-7281-6476-2/21/$31.00 ©2021 IEEE ICUFN 2021

created at the University of Stanford in 2008 [3]. OpenFlow
is a non-proprietary protocol that defines an API for commu-
nication between the controller and network devices, filling
the gap regarding the lack of flexible network programma-
bility [4], and allowing for high-performance and low-cost
implementations. An OpenFlow switch consists of one or
more flow tables, a group table which perform packet lookups
and forwarding, and an OpenFlow channel to an external
controller. A flow table contains a list of flow entries. Each
flow entry contains a set of fields that may change according
to the OpenFlow version. The fields that remain constant
among all OpenFlow versions are: (i) Match fields: against
which a packet is matched; (ii) Counters: updated when a
packet match occurs; and (iii) Instructions: attached to a flow
entry to describe OpenFlow processing when a packet matches
that entry. As regards OpenFlow messages, the following are
particularly relevant:

Packet In - allows interaction between the datapath and
the controller. This message (ofp_packet_in) is used in three
situations: i) when an action defined in a flow asks for this
message; ii) when there is no flow matching the packet (table
miss); or iii) as result of a Time to Live (TTL) error [3].

Flow Mod - allows changing the state of a flow in a switch,
namely delete, add, or modify. All Flow Mod messages begin
with the standard OpenFlow header, containing the appropriate
version and type values, followed by the message structure.
One import parameter of ofp_flow_ mod, relevant for this
work, is the hard timeout that represents the number of seconds
a flow is active, regardless of its activity duration.

Group Mod allows managing groups (create, modify, and
delete) in the group table. A group is an abstraction that
eases complex and specialized packet operations that cannot be
easily performed through a flow table entry. Examples of these
operations are packet mirroring, link redundancy for failure
prevention, among others. Each group receives packets as input
and performs any OpenFlow actions on these packets.

These OpenFlow messages will be explored in the con-
cretization of the SDN security framework, being their usage
highlighted in Section IV.

III. RELATED WORK

As reconfigurability is a key property associated with SDN,
this concept has been explored to devise SDN-based defense
solutions to detect and prevent network intrusion attacks. In
[5], a network framework able to forward or mirror incoming
packets to an off-path processing unit via OpenFlow switch is
proposed. This processing unit includes Deep Packet Inspec-
tion (DPI), IDS, Distributed Denial of Service (DDoS) units,
and firewall. After arriving at the processing unit, a packet
is passed to the DPI unit for analysis, being the controller
notified. Then, the policy creation module of the controller
creates proper policies and notifies the processing unit. In case
of detection of malicious traffic, the processing unit can react
in 3 separate ways: alert, quarantine, and block. In case of
an alert action, the forwarding rules are not changed, and the
controller is notified with an alert, whereas under quarantine,

the entire traffic will be logged. Finally, if a block action is
fired, a message is sent to the controller to block specific
traffic.

In [6], the authors proposed a security framework consisting
of an SDN controller, a clustering node and Detection as a
Service (DaaS) nodes. In this framework, all network traffic is
mirrored and sent to the clustering node. The clustering node
acts as a load-balancing unit, deciding to which of the DaaS
nodes the traffic will be sent to. A DaaS acts similarly to an
IDS, analyzing and detecting threats, and deciding whether
the traffic is malicious or benign. If the traffic is considered
malicious, the DaaS will inform an SDN application running
on the controller that the flow should be blocked. Next, the
controller will insert the blocking entry on the switch, blocking
further traffic.

To detect anomaly-based attacks with the help of SDN,
in [7], a graphical approach has been proposed that uses
OpenFlow switches to discover the source of attacks, finding
paths susceptible to an anomalous attack. With SDN, collab-
orative detection can be implemented where each switch or
host reports its attack detection to the controller. Then, the
controller can decide to consider an attack if just one, the
majority, or all the devices report an attack, enhancing the
performance of anomaly detection [2].

Regarding the detection, prevention, and recovering from
DDoS attacks through SDN, in [8], the authors suggest the
detection of DDoS attacks using flow volume and flow rate
asymmetry feature. The approach uses a sequential and con-
current method to change flow monitoring granularity on all
switches to quickly locate the potential victims and suspicious
attackers.

After evaluating existing works in network security that
leverage the use of SDN, the gap of multilevel load balancing
strategies, determinant to reach a scalable and flexible solution,
is evident. This gap concerns both the distribution of load
between network resources and the requirements of traffic
analysis, as existing solutions always rely on examining all
packets in the network. With this open issue in mind, this
work proposes a robust solution for both network security and
load-balancing traffic analysis, allowing to save resources and
increase network usage when there is no need for a complete
breakdown of all traffic flowing in the network.

IV. PROPOSED APPROACH

This section presents the design goals and the architecture
of the devised SDN-based security framework. The main
components and protocol interactions which allow a proper
load-balancing among switches and IDSs are also described.

A. Design Goals

The objective of this work is to create an efficient security
framework sustained by the SDN capabilities. In this way, it is
necessary to define the relevant design goals to accomplish this
purpose. Taking advantage of SDN features, and considering
security, flexibility, scalability, and load balancing as target
properties, the framework design goals are as follows:

107

• enhance security without jeopardizing network perfor-
mance, resorting to an SDN architecture with off-path
traffic analysis;

• distribute traffic load among switches and IDS;
• maximize malicious traffic detection, without analyzing

all packets;
• identify and block traffic from malicious sources;
• be compatible with OpenFlow-enabled devices.

B. System Architecture

The spacial representation of the proposed architecture is
illustrated in Figure 1. As shown, an SDN controller interacts
and configures network switches and IDSs to allow a load-
balanced inspection of existing network flows.

Fig. 1. System Architecture

As presented in Figure 2, in operational terms, the system
is composed of a virtual network emulated by Mininet [9]
that creates virtual OpenFlow switches with the help of Open
VSwitch (OVS). Then, as a southbound protocol, OpenFlow
establishes bidirectional communication between the SDN
controller (Floodlight) [10] and the OpenFlow switches. When
a flow is mirrored, it is sent to Snort [11] to find out if
the flow is malicious. Snort is executed with the option to
output the alerts to a UnixSocket called snort_alert. The
component UnixClient.py reads all alerts sent by Snort to the
Unix socket and redirects them to Floodlight. This component
acts as a client, establishing a connection with a server running
as a thread in the module written in Floodlight. Each of
these entities possesses a certificate for the establishment of a
Transport Layer Security (TLS) 1.3 connection.

The proposed framework mirrors incoming traffic based
on flow distribution to off-path IDS, which will infer the
maliciousness within the traffic. The IDSss produce alerts in
the presence of malicious traffic which are then sent to the
UnixSocket unit. An independent component will read the
incoming alerts and establish a TLS [12] connection with the
SDN controller to transmit the security alerts safely. The SDN
controller will take proper network/switches configuration
measures according to the received feedback. Depending on
the flow analysis outcome, monitoring will continue as before

Fig. 2. System Components

or the incoming flow is blocked. If a flow is considered benign,
that flow stops being examined regularly. To improve scalabil-
ity, packets mirroring and their corresponding inspection are
distributed among the switches and IDSs within the network,
as discussed in Section IV-C.

C. Main Components

The proposed framework is composed by a set of soft-
ware components running in different platforms (Floodlight,
Snort, Mininet and the UnixClient.py, as shown in Figure 2).
Considering the scope of this work, an additional module
was developed and integrated into Floodlight platform. This
module is composed of several threads of type packet_in
handler, namely, a flow stats thread for each switch in the
topology, a round-robin thread, and a Snort server thread. The
behavior of these threads are explained below, followed by the
description of the proposed load-balancing algorithm.

1) Packet_in Handler: In SDN, when a packet reaches a
switch without matching any existing flow, an ofp_packet_in
is sent from the switch to the controller. The Packet_in handler
processes these messages and decides which switch and IDS
will be responsible for mirroring the traffic. In this decision, it
is assumed that all switches and IDSs have possible paths to
destination hosts in the network. The flow diagram in Figure
3 resumes the main features of the Packet_in thread.

The Packet_in handler has two types of behavior depending
on the existence of a match. In the case of there is a match
for the incoming packet, the switch limits itself to perform the
actions present in the instructions installed for the respective
flow (Step 2). Otherwise, Step 3 is applied. A structure called
groups defined within the new Floodlight module keeps all
information of the Group Mods created to mirror the traffic.
From now on, each entry will be referred as a group1.

Case 1 - There are two reasons for a nonexistent group
match (Step 3.1 check): the flow was not created, or the flow
is no longer active because the hard timeout associated with the
flow has already expired. If the group does not exist, Steps 3.2
to 3.9 are applied. Then, it is chosen the best switch and IDS
that are going to be responsible for duplicating and analyzing
the duplicated flow, respectively. Once this is carried out, the
interface connecting the switch and the IDS is determined, and
a group is created with all the relevant information including

1Unlike the temporary nature of Flow Mods, Group Mods, once created,
are persistent even if no Flow Mods are applied for Group Mods actions.

108

Fig. 3. Packet_in handler

source/destination IP, switch, and IDS instance’s Media Access
Control (MAC) addresses. Next, a match to the flow is created,
taking into consideration the transport protocol as well.

The actions are then built, creating a bucket with two lists of
actions: one for normal forwarding and other that will change
the MAC address of the packet that matches the MAC interface
determined before, mirroring it to the respective IDS port, also
determined previously. Finally, a Group Mod is created with
the match and actions generated in the previous steps, and sent
to the respective switch (Steps 3.10 and 3.11). A Flow Mod
is also created to perform the actions of Group Mod. At the
end, the group number is increased so that all groups have a
distinct identifier. As last step, the number of active flows in
each switch is updated.

Case 2 - When the group already exists, but there is no
flow applying to the Group Mod actions, the group number is
determined based on the source and destination IP addresses
and protocol in the groups data structure. At this point, the
group priority is checked, as it can influence the definition of
actions, as discussed next. Similarly to the case of there was
no group created, the best switch and IDS are determined, and
the respective actions and match fields created.

Group Priority and Quarantine - The priority represents
the severity of the alerts found in a flow/group. The priority
values range from 0 to 4, being 1 the most dangerous alert.
For example, while an Indicator-scan UPnP service discover
attempt has priority 3, an Indicator-shellcode x86 inc ebx
NOOP has priority 1. The value 0 is reserved for no alerts.

Flows with priority 0 will suffer no action as they will be
handled by the round-robin thread and benignGroups structure
discussed below. For priorities between 2 and 4, it is checked
if the newly elected switch and IDS are the same as the ones

currently in use for this flow/group. If at least one is different,
the Group Mod is deleted as the actions will not match. If the
priority is 4 a new Group Mod is created and installed in the
respective switch, and a new Flow Mod is created with double
default hard timeout. This hard timeout value (quarantine time)
was selected to assure that a flow exhibiting signs of ill-intent
is fully analyzed. The same behavior applies if the priority is 3,
however, the Flow Mod is now created with the quadruple of
the default hard timeout. As this priority represents a higher
potential for dangerous behavior, the time of analysis must
be prolonged. In case of priority 2, the corresponding Group
Mod diverts all traffic to the IDS, without sending any traffic
to the intended destination. In this case, a Flow Mod with a
quadruple default hard timeout is also created and sent to its
respective switch. Finally, when the priority is 1, the installed
Group Mod is deleted and a Flow Mods is created so that all
packets matching dangerous flows are dropped. These Flow
Mods are permanent (have no hard timeout), and sent to all
switches in the network to proceed accordingly. Every time a
Flow Mod is sent, the number of active flows in the respective
switch and IDS is updated.

2) Flow Stats: The flow stats thread controls which flows
are active per switch, and also monitors the number of flows
per switch and IDS (used as input for the load-balancing
algorithm). An OVS script prints the active flows in each
switch, obtaining the flow’s data. The information on active
flows is then compared with the information in the groups
structure to find which groups are no longer active. When
a flow becomes inactive and has zero priority (no alerts)
it is added to a new data structure called beningGroups,
composed of no malicious flows. The flow stats thread runs
on each switch for a complete gathering information across
all topology, updating data every 5 seconds.

3) Round Robin: The round-robin thread aims at reducing
the number of examined flows, without degrading the security
level. This thread starts by waiting until the benignGroups
structure has elements, and then performs a round-robin cycle
to periodically activate new flows for analysis. When a group
is selected for activation, the best current switch and IDS to
analyse it is recalculated.

4) Unix Client and Snort Server: The UnixClient starts
by establishing a TLS 1.3 connection between the Snort
Server and the SDN controller. After that, the alerts from the
snort_alert Unix Socket are read and sent to the Snort Server.
When the Snort Server receives an alert, the protocol, source,
and destination IP are checked for a match to identify alert’s
origin. Once the flow and priority corresponding to the alert
are found, the procedure described in the Packet In section
takes place.

5) Load-Balancing Algorithm: The load-balancing algo-
rithm is used to determine the best switch and IDS to han-
dle incoming flows. Taking into account the discussion in
Section III, the algorithm selected in this work follows the
same principles of the least connections [13], called the least
number of active flows. The advantages of this algorithm are
its simplicity and low-time of execution, which are pivotal

109

characteristics for an algorithm highly dependable on scala-
bility. However, the performance of this algorithm decreases
when the flows differ significantly in the number of packets,
which impacts the amount of traffic being balanced between
network components. Thus, packet counts must be considered
as an additional input to enhance the balancing strategy. At
present, the load-balancing algorithm starts by determining the
switch/IDS with the least number of active flows. In case of
a tie, these components are chosen randomly.

V. TESTS AND RESULTS

In order to evaluate the proposed framework, a set of
tests was performed using experimental topology scenarios
configured in Mininet. The purpose was to assess the flexibility
and efficiency of load distribution among switches and IDSs,
and the capacity to detect anomalous traffic.

A. Experimental Setup

The experimental analysis resorts to two types of traffic
traces. The first one consists of traffic resulting from a vul-
nerability scan using the full Nessus’ database [14]. Thus, this
trace contains hundreds of flows expected to be identified as
anomalous by the IDS. The second trace includes benign traffic
resulting from video streaming sessions. These traces are then
injected into the experimental topologies depicted in Figure 4.

Topology 1 (illustrated in Fig. 4(a)) is a simple environment
comprising a single IDS, SDN-capable switch, and SDN con-
troller, used uniquely as a test baseline. Topology 2 (Fig. 4(b)),
used to assess the efficiency of the distributed traffic analysis,
includes two IDSs, three SDN-capable switches and one SDN
controller responsible for load balancing and result analysis.

B. Evaluation Tests and Results

The first test aims at analysing the framework’s efficiency
in detecting malicious traffic and taking action on it. To do
so, the malign trace was injected in Topology 1 (Fig. 4(a))
having the developed Floodlight module deactivated, allowing
the traffic to flow naturally in the network. As a result, the
IDS generated 156 alerts of 17 anomaly types.

Then, the same trace was injected in Topology 2 (Fig. 4(b))
with the security module activated and configured to drop all
traffic related to the generated alerts. In this case, the Flow
Mod created to drop packets was configured without hard
timeout. As consequence, the system generated 24 alerts from
4 different types. This means that after being identified for
the first time by any of the IDSs, all traffic of the same type
was blocked by the SDN controller, which demonstrates the
overall system accuracy.

Combined with the adopted load-balancing algorithm, the
timeout defined for each flow type may affect the number of
packets analyzed in each IDS. In this way, while assessing the
ability to distribute traffic between IDSs, three sets of hard
timeouts are comparatively evaluated. As shown in Table I, the
default and configurable timeouts for IDS alerts with priority
4, priorities 3 and 2, and priority 1 are defined as explained
in Section IV-C (Group Priority and Quarantine).

(a) Topology 1

(b) Topology 2

Fig. 4. Evaluation scenarios

TABLE I
TIMEOUTS PER TYPE OF ALERT.

Set 1 Set 2 Set 3
DEFAULT 20 sec 60 sec 90 sec
PRIORITY_4 40 sec 120 sec 180 sec
PRIORITY_3, PRIORITY_2 80 sec 240 sec 360 sec
PRIORITY_1 drop drop drop

Resorting to Topology 2, different test scenarios combine
the analyzed traces and timeout configurations to assess the
efficiency of load balancing. For the malicious traffic trace,
Table II summarizes the resulting load measured as the number
of packets mirrored by each switch to the IDS.

The results shown that, although using a load-balancing
algorithm based on the number of active flows being analysed
by each IDS (without considering flow size), the framework is
able to fairly distribute traffic between the detection systems.
The difference in the total of packets in each scenario is due to
three factors: (i) acknowledgment packets exchanged between
the hosts and the SDN controller; (ii) packet broadcasting
when the forwarding module of Floodlight does not know yet
a path to a given host; and (iii) control packets (e.g. ICMP and
LLDP) used by the topology module of Floodlight to discover
active hosts.

Table II also presents the results for the test scenarios
using benign traffic and Topology 2. A first remark is the
absence of IDS alerts, showing the framework overall cor-
rectness regarding false positives. Here, the distribution of
traffic between IDSs is similar to scenarios 1-3. Comparing
the results across all scenarios, it is clear that under malicious
traffic, the number of analyzed packets increases. In fact, when

110

TABLE II
OVERALL RESULTS

Malicious traffic
Tests Scenario 1 Scenario 2 Scenario 3
Timeouts Set1 Set2 Set 3
No Alerts 138 399 261

IDS 1 IDS 2 Total IDS 1 IDS 2 Total IDS 1 IDS 2 Total
Switch 1 71794 38261 110055 87659 28431 116090 115059 47320 162379
Switch 2 71802 55158 126960 163980 90159 254139 76075 97874 173949
Switch 3 95788 87680 183468 171717 82069 253786 65129 49634 114763
Total 239384 181099 420483 423356 200659 624015 256263 198828 451091

Benign traffic
Tests Scenario 4 Scenario 5 Scenario 6
Timeouts Set1 Set2 Set 3

IDS 1 IDS 2 Total IDS 1 IDS 2 Total IDS 1 IDS 2 Total
Switch 1 10852 14303 25155 69078 25760 94838 31148 45130 76278
Switch 2 57623 32168 89791 72127 32488 104615 74807 67905 142712
Switch 3 9229 12733 21962 28825 75046 103871 111644 14338 125882
Total 77704 59204 136911 170030 133294 303324 217599 127373 344972

a flow is considered malicious, it will always be analyzed,
and never enters the round-robin process. In scenarios 1-3,
as almost every flow in Nessus trace is deemed malicious by
Snort, all flows at a given time were tagged as malicious.
On the contrary, benign traffic only yields benign flows.
Upon becoming inactive, flows are inserted in the round-robin
process, and will only be analyzed again sporadically in the
future. This decreases the number of packets under analysis
dramatically.

Looking at the results collected for malicious traffic, it is
possible to conclude that the amount of analyzed traffic is
not directly proportional to the increase of the hard timeout.
The framework behavior strongly depends on the number of
alerts generated, as well as their severity. On the other side,
in presence of benign traffic, the amount of traffic analyzed is
directly proportional to the hard timeout condition.

The test with the best performance using malicious traffic
was Scenario 2 (default hard timeout of 60 seconds), where the
higher number of alerts was found, also aligned with the larger
amount of traffic examined, for all tests. Under benign traffic,
Scenario 4, which corresponds to the smaller hard timeout,
i.e., 20 seconds, led to the best results.

VI. CONCLUSIONS

In this work, IDSs were coupled with the programmability
of SDN to create a reliable and scalable framework to improve
network security. This framework is composed by an SDN
controller, the underneath topology with IDS nodes, and an
SDN application. The SDN application is responsible for
managing the packets that need to be mirrored for analysis,
determining actions for malicious traffic, as well as balancing
traffic between each switch and IDS in the topology. The
proof-of-concept attests that the framework detects and acts
efficiently on malicious traffic. This was attained from the
number of alerts found and the distribution of traffic load by
all switches and IDSs. Although the results are encouraging,
the load-balancing algorithm may be enhanced, namely ac-
counting for flows comprising a significantly divergent number

of packets. Considering that some attacks are performed by
combining multiple flows, e.g., DDoS attacks, distributing the
analyzed traffic across different IDSs without affecting the
overall detection efficiency is also a future research topic.

Acknowledgements
This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020
and by FCT – Fundação para a Ciência e Tecnologia – within the R&D Units
Project Scope: UIDB/00319/2020

REFERENCES

[1] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Verissimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-Defined Networking: A Comprehensive Survey. Proceedings
of the IEEE, 103(1):14–76, jan 2015.

[2] Danda B. Rawat and Swetha R. Reddy. Software Defined Networking
Architecture, Security and Energy Efficiency: A Survey. IEEE Commu-
nications Surveys & Tutorials, 19(1):325–346, 2017.

[3] OpenFlow Switch Specification v.1.5.1, ONF, . URL:
https://opennetworking.org/software-defined-standards/specifications/,
Accessed: April 2021.

[4] David R. Teixeira, João Marco C. Silva, and Solange Rito Lima. De-
ploying time-based sampling techniques in software-defined networking.
2018 26th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages 1–6, 2018.

[5] S. Veena and R. Manju. Detection and mitigation of security attacks
using real time SDN analytics. In 2017 International conference
of Electronics, Communication and Aerospace Technology (ICECA),
volume 2, pages 87–93, April 2017.

[6] Mehrnoosh Monshizadeh, Vikramajeet Khatri, and Raimo Kantola.
Detection as a service: An SDN application. International Conference
on Advanced Communication Technology, ICACT, pages 285–290, 2017.

[7] J. Francois and O. Festor. anomaly traceback using software defined
networking. In 2014 IEEE International Workshop on Information
Forensics and Security (WIFS).

[8] Yang Xu and Yong Liu. DDoS attack detection under SDN context.
Proceedings - IEEE INFOCOM, 2016-July, 2016.

[9] Bob Lantz and Brian O’Connor. Mininet. URL: http://mininet.org/,
Accessed: April 2021.

[10] Floodlight. URL: http://https://floodlight.atlassian.net/wiki/home/, Ac-
cessed: April 2021.

[11] Cisco. Snort. URL: https://www.snort.org, Accessed: April 2021.
[12] RFC 8446, TLS 1.3. URL: https://tools.ietf.org/html/rfc8446, IETF

Accessed: April 2021.
[13] Anish Ghosh and Mrs Manoranjitham. A study on load balancing

techniques in SDN. Int. Journal of Eng. & Technology, 7:174, 03 2018.
[14] Nessus. URL: https://www.tenable.com/products/nessus, Accessed:

April 2021.

111

