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Abstract—The development of intelligent manufacturing and
3D printers is rapidly engaging in the industry. However, 3D
printers are challenged by occasional anomalies due to leading
to failure in 3D performance. In this work, a fault diagnosis
based on a convolutional neural network (CNN) for 3D printers
is proposed. We have leveraged an online repository of a set
of data streams collected from working 3D printers. The CNN
was used to process, detect and classify anomalies in 3D printing
with appreciable accuracy. The proposed CNN outperformed the
support vector machine (SVM), and artificial neural network
(ANN) by 5.1% and 25.7%, respectively.

Index Terms—Convolutional neural network (CNN), 3D printer,
fault diagnosis, deep learning

I. INTRODUCTION

Nowadays, the 3D printer is one of the most useful devices
in medical, industrial, manufacturing, and even other areas.
The 3D printer has an advantage over conventional printers
in terms of its speed, cost benefits, and flexibility. With the
remarkably increasing application of 3D printing technology,
it is important to maintain the 3D printer devices and ensure
good-quality printed products. However, 3D printers have
several components that are susceptible to a fault. These
components include extruders, bearings, gears [1]. The faults
in these components result in anomalies in the output of the 3D
printer. Specifically, faults cause an interruption in the printing
process which results in poor-quality printed products. In order
to avoid this, several studies available in the literature focuses
on real-time fault diagnosis of 3D printers. These studies
diagnose the faults using different kinds of signals extracted
from the components.

Early detection of faults in 3D printers can not only save
time but can also reduce maintenance costs and materials.
Fault diagnosis has been an important part of the management
system-health of industrial equipment. Various methods have
been proposed to improve the fault diagnosis performance in
3D printing. In [2], a transfer support vector machine (TSVM)
technique is used for fault diagnosis of delta 3D printers.
In the experiments, the fault classification accuracy achieves
83.79% using only 6.7% of the dataset for model training.
In [3], a local support vector machine (LSVM) was used as
an attitude monitoring method for condition recognition of
delta 3D printers. The use of LSVM claims to reduce the
cost of the experiment. A cheap nine-channel attitude sensor
was installed on the printer’s mobile platform to monitor
the printer’s working status. The authors in [1], proposed a
deep hybrid state network (DHSN) for fault diagnosis of 3D

printers using attitude data with low measurement precision.
This strategy improved learning efficiency and overcomes the
vanishing-gradient problem for deep learning. In [4], a fault
diagnosis method based on echo state networks (ESN) for
3D printers is proposed. A low-cost attitude sensor installed
on the 3D printer was employed to collect raw fault data.
In [5], a one-shot learning-based approach is proposed for
multi-class classification of signals coming from a feature
space created only from healthy condition signals and one
single sample for each faulty class. They analyzed the fault
of fused deposition modeling (FDM) type 3D printer through
monitoring of machine vibration signals as well as fault
diagnosis of FDM 3D printer based on sensors.

Artificial Intelligence (AI) improves the quality, speed, and
effectiveness of human works. AI-based early fault diagnosis
technologies, which have started to gain reliability in auto-
motive, aviation, and wind turbine fields, and railways, have
begun to use for defect detection and predictive maintenance
[2]. Fault diagnosis proposed in the literature mainly relied
on the domain experts to judge the type of fault based on its
experience, which has too much limitations. If we base on the
current data, fault diagnosis will have low accuracy. To provide
higher accuracy, several 3D fault diagnosis methods consider
historical data. However, considering the historical data in-
creases the computational burden. Hence, feature extraction is
used to reduce the number of data. Feature extraction method
requires knowledge on the system to extract useful features and
get higher accuracy on the model. In other words, traditional
3D printer fault diagnosis methods yields low accuracy when
raw data is used directly.

In this work, a fault diagnosis for the 3D printer is developed
using a convolutional neural network (CNN). CNN is widely
used in classification tasks because of its capability in extract-
ing the features and discriminating the classes [6]. It learns
the features automatically without prior knowledge of signals.
Using CNN, feature extraction on the 3D printer signals can
be generalized. That is, using CNN removes the additional
process of determining the useful feature of each signal. This
reduces the computational burden while having a higher fault
diagnosis accuracy. Additionally, using CNN for time-series
classification has several advantages over other methods. It
has highly noise-resistant models, and it can extract very
informative, deep features, which are more independent from
time [7].
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Fig. 1: Sample Plot of Faults in 3D Printer

The rest of this paper is organized as follows. In Section
II, introduces the 3D printer fault detection. In Section III, we
described the experimental setup, results and its discussion.
Finally, conclusions are drawn in Section IV.

II. 3D PRINTER FAULT DETECTION

The methodology of this paper is described in this section.
In this part, a fault diagnosis method using CNN for fault
detection is proposed, which can effectively predict if there
is a fault in the 3D printing process. To achieve this, various
faults were classified and their respective figures converted
into images before feeding them as input to the CNN model
to perform the network classification task.

A. 3D Printer Dataset

The 3D printer dataset used for this research was taken from
an online repository [8]. The dataset which is known as a
dataset for anomalies detection in 3D printing comprised of
3-dimensional data from the printing base, 3-dimensional data
from the head accelerometer, and a tension, measured every
0.1s. A sample of data is shown in Fig. 1 where a is the x,
y, and z data obtained from the printing base, b, is the x, y,
and z data obtained from the head accelerometer and c is the
tension.

The data is labeled from 0 - 6 accordingly; 0 for normal
or no-fault, 1 for arm failure, 2 for bowden tube fallout, 3 for
failure in plastic finish, 4 for the wrong retraction, and 5 for
unsticking models. Details of the dataset are available in [8].
Arm failure refers to the detachment of the arm which causes
the head to tilt. Bowden tub fallout refers to a failure in which
the plastic fails to reach the printed model. Failure in plastic
finish refers to the fault at which no more plastic is available
to intrude. The wrong retraction refers to a failure at which
too many plastic hooks on the next layers. Unsticking models
refers to the failure at which the printing head hooks on the
rolled print.

The total number of data from the dataset is 908,214 rows
by 8 columns. We have used the tensorflow environment for
the simulation using data split ratio of 70%, 20% and 10% for
training, testing and validation respectively. Thus, training data
was 635,748 rows by 8 columns, testing data was 181,644 rows
by 8 columns and validation was 90,822 rows by 8 columns.

Fig. 2: Flowchart of the Proposed CNN Scheme

B. Proposed Method

In this study, a CNN is used to diagnose 3D printer faults.
CNN is used because of its capability of extracting features
without requiring knowledge of the system. In addition to its
feature extraction capability, it is also widely used in several
classification tasks [6]. The overall framework is shown in
Fig. 2. In the proposed method, first, the time-series data is
converted into an image. Then, the images are label according
to the type of fault. After that, the CNN is trained using the
images as the input and labels as output. Finally, the proposed
method is tested to measure its performance.

To convert the time-series data into images, first, the lagged
values of each attribute are extracted. The lag used in this
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Fig. 3: Proposed CNN Network Architecture

study is 24. After extracting the lags, the values are normalized
to be between 0 to 255 to represent a pixel value in the
image. After normalizing the values, the data is reshaped into
a x (l+ 1) array wherein a is the number of attribute and l is
the number of lags. The a x (l + 1) array is finally converted
into an image. The CNN architecture as implemented on the
Tensorflow environment is described in Fig. 3.

An example of an image obtained from converting the time-
series data is shown in Fig. 4. As shown in the figure, the x-
axis represents the number of lags. The lags used in this study
are 24. The y-axis represents the value of the attributes or
values of the sensors at each corresponding lag. Two samples
are provided in Fig. 4 to provide a point of comparison at
different points in time. The resulting images are different
for each fault type. The images are plotted according to their
fault category as mentioned above. The result of time-series
to image conversion shows similarities for similar types of
fault and differences for different types of fault. Since the
images obtained for each fault are different, a CNN can be
used to extract the feature of each image and discriminate one
fault from another. After obtaining the image equivalent of
the time-series data, each image is labeled according to its
fault category. The data is labeled from 0 - 6 accordingly: 0
for normal or no-fault, 1 for arm failure, 2 for bowden tube
fallout, 3 for failure in plastic finish, 4 for the wrong retraction,
and 5 for unsticking models. After labeling the images, a CNN
model is constructed and trained.

III. RESULTS AND DISCUSSION

The effectiveness of the present CNN method was validated
on the fault diagnosis. Both ANN and SVM require an
additional feature extract to learn the necessary information
from the inputs. On the other hand, CNN has the capability of
both extracting the feature and classifying the fault. The fault
diagnosis using the methods applied in the 3D printer is listed
in Table I, which lists the result of fault diagnosis using SVM,
ANN, and CNN. Fault diagnosis is applied to classify the
different numbers of classes (6, 4, and 2). Among the number
of classes, the result of fault diagnosis with only 2 classes
(with a fault or without fault) yields the highest accuracy for
all SVM, ANN, and CNN. It was also observed that the result
of fault diagnosis with 6 classes yields an accuracy higher
than the result with 4 classes but less than the result with
2 classes. This observation contracts the hypothesis that the
lesser number of classes involved, the higher the accuracy
of fault diagnosis. In this case, the methods might learn or

obtain new information by incorporating more data from other
classes. Overall, CNN yields the highest accuracy of 99.67%.

TABLE I: Diagnosis Results of Different Approaches

Method 6 Classes 4 Classes 2 Classes
SVM 91.69% 91.02% 94.81%
ANN 74.14% 69.73% 73.31%
CNN 97.05% 95.58% 99.67%

Contrary to what was expected, SVM yields higher
accuracy than ANN, which is a machine learning-based
method, in fault diagnosis at 6, 4, and 2 classes. The
inference time is listed in Table II where it was observed that
the ANN has the lowest inference time while SVM has the
highest in diagnosis fault with 6, 4, and 2 classes. The result
shows that the CNN outperforms CNN in both accuracy
and inference time. On the other hand, the ANN has less
inference time than CNN. Despite that, CNN yields higher
accuracy than ANN by about 25.7%.

TABLE II: Inference Time

Method 6 Classes (s)

10% 20% 30% 40% 50%

SVM 0.0005584682 0.0003806764 0.0005679302 0.0007684107 0.0009513302
ANN 0.0000560902 0.0000433070 0.0000308904 0.0000286598 0.0000287251
CNN 0.0001190157 0.0001201772 0.0000829067 0.0001299181 0.0001031863

Method 4 Classes (s)

10% 20% 30% 40% 50%

SVM 0.0001148917 0.0002487042 0.0010835673 0.0014608332 0.0015230241
ANN 0.0000241303 0.0000228211 0.0000196907 0.0000190977 0.0000221261
CNN 0.0000852370 0.0000889184 0.0001245345 0.0001006575 0.0000840729

Method 2 Classes (s)

10% 20% 30% 40% 50%

SVM 0.0009390510 0.0006416284 0.0029248214 0.0012504224 0.0045531742
ANN 0.0000305128 0.0000230662 0.0000220808 0.0000202858 0.0000214269
CNN 0.0000873570 0.0000871023 0.0000937552 0.0000807170 0.0000863176

Furthermore, the training and validation accuracy of the
CNN model used to diagnose the faults are shown in Fig. 5.
The figure shows higher accuracy in using the training data
compared to using the validation data. Despite that, the accu-
racy of the model using the testing data still yields good results
as listed in Table I. Both training and validation are performed
with 100 epochs. In training, the accuracy increases from
approximately 0.1% to around 99% from epochs 0 to around
8. After epoch 8, the accuracy remains constant at 99%. On the
other hand, the loss in training remains low until epoch 80 at
which a spike is observed. Unlike training accuracy and loss,
the validation accuracy and loss have shown more volatility.
The validation accuracy keeps increasing and decreasing from
epoch 0 to 100 overall increasing trend. On the other hand,
the validation loss seems to follow the increasing trend of
accuracy from epoch 0 to 20 but suddenly reduces when a
sudden increase in the validation accuracy is observed.

IV. CONCLUSION
A fault diagnosis based on a convolutional neural network

(CNN) for 3D printers is proposed. The performance of the
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Fig. 4: Equivalent Image of Time-series Data

Fig. 5: CNN Model Training Accuracy and Loss

present technique was discussed and experimentally validated.
The CNN was employed for intelligent fault diagnosis of
3D printers using the dataset from an online repository. In
comparison with different peer methods, the proposed CNN
performed effectively. Although the inference time of ANN
shows less time of training than the other methods, it gave
the lowest accuracy. It is a future research direction to see the
possibility of ensemble neural networks and test for time and
real-time complexity considering the role of 3D printing in
modern-day industrial applications.
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