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Abstract—In this paper, we propose a feature expansion
approach for the lowest one-dimension (1-D) time series data
classification problems, where the expanded features include
temporal, frequency, and statistical characteristics. We show that
the proposed feature expansion can improve the classification
accuracy compared to conventional machine learning algorithms
for data classification. This is because the expanded features
enable classifiers to consider multiple dimensions which are
not feasible for low dimension data. Experiment results show
that the proposed feature expansion method can improve the
classification performance compared to conventional machine
learning algorithms for 1-D actual biosensor data.
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I. INTRODUCTION

The advent of IoT and the development of the healthcare
industry have accelerated in processing bio-data for different
purposes using machine learning algorithms, where machine
learning algorithms have showed the effectiveness and been
developed for practical applications. For example, a prediction
of aggression in youth with Autism Spectrum Disorder with
wearable biosensor data is discussed in [1], where aggression
to other people can be predicted one minute before with high
accuracy based on a logistic regression algorithm. In clinical
data analysis, a hybrid machine learning algorithm is proposed
to find important features that may lead to improved accuracy
in predicting cardiovascular disease [2].

It is however shown that studies with biosensor data have
several limitations [3]. Reliable generalizability has been a
problem to achieve in machine learning algorithm design
as individual person has its own patterns. While there is
an attempt to facilitate an available signal to achieve better
performance, an unreliable and noisy signal may hinder the
generalization of the algorithms. To overcome this limitation,
a statistical feature-based method is presented in the field
of network analysis. An illustrative example is in [4], where
statistically driven entropy based features for network flow data
is proposed to distinguish benign and anomalous flows.
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Fig. 1. Histogram of average pupil size for participants p = 6, 12, 27, 51

In this paper, our goal is to infer learning states of
participants based on their pupil size data. Based on the
fact that different human cognition process can lead to the
changes of pupil size and complex learning tasks can increase
pupil diameter [5], we use the pupil size data to analyze
and interpret the cognitive and psychological response of
participants. However, it is challenging for inference of the
cognitive state as each person has different response and
biosensor signal may be corrupted by noise. As shown in
Fig. 1, the distribution of pupil sizes shows distinctive patterns
based on learning state. Since it is difficult to identify the
tendency of each person in each state with a single feature,
better performance can be achieved by modifying the time
series data. Hence, we propose a feature expansion method that
transforms the 1-D time series data into a vector of expanded
features with statistically driven features, temporal features
and frequency features represented by coefficients of transform
measures. The transformed multiple features enable machine
learning algorithms to adaptively use multiple features, leading
to improved classification performance. The performance im-
provement based on the proposed feature expansion approach
is confirmed by the actual pupil size data.

The rest of the paper is structured as follows. In Section II,
we formulate the problem with description of data set and the
proposed approach feature expansion method that transforms
1-D time series data into an expanded feature vector. In
Section III, the experiment design and result are illustrated
in detail. Lastly, conclusions and suggestions for future work
are presented in Section IV.
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Fig. 2. A diagram for the proposed feature expansion approach.

II. PROBLEM SETUP AND PROPOSED FEATURE
EXPANSION APPROACH

In this paper, we consider a classical classification problem,
where a state needs to be inferred given a raw data set X
that consists of 1-D vectors Xsp for participant p ∈ P =
{1, 2, . . . , P} in stats s ∈ S = {1, 2, . . . , S} as shown in
Fig. 2. The data for participant p at state s with its data length
tsp is denoted by Xsp[1 : tsp]. For data classification, several
machine learning algorithms can be deployed. However, blind
adoption of machine learning algorithms for data classification
on the raw data X may result in low performance, in particular,
for 1-D data, which also depends on individual participants.

In order to overcome these limitations, we first normalize
the data Xsp as

X̃sp[1 : tsp] = {x̃(1)
p , · · · , x̃(tsp)

p }T

which can reduce the variations in the raw data X caused by
individual participants. The normalized data X̃sp[1 : tsp] is
further processed as

X̃s[1 : Ts] = {x̃(1)
1 , · · · , x̃(ts1)

1 , · · · , x̃(1)
P , · · · , x̃(tsP )

P }T

= {x̃(1)
1 , · · · , x̃(Ts)

P }T

where Ts =
∑P

p=1 tsp represents the total number of data
points in state s. These processes can anonymize the data
by removing the dependency in each participant, so that the
classification can only be made for the state.

We then convert the normalized and anonymized 1-D data
set X̃s[1 : Ts] into multi-dimensional data based on the feature
expansion function T : Rl×1 → R1×NE , defined as

T (M,S, l;x) = t (1)

where l denotes a window size that is a truncation unit for
the original 1-D data. The feature expansion function T maps
x with length l into expanded feature vector t that consists
of NE number of features containing the coefficients induced
from measure M and statistical method S . By definition in
(1), X̃s[1 : Ts] is transformed to Ts such that

T (M,S, l; X̃s) = Ts

where t
(u)
s ∈ Ts for u = 1, · · · ,

⌈
Ts

l

⌉
. Each element t(u)s =

{t(u)1 , · · · , t(u)NE
} is a vector of NE features.

Fig. 3. The proposed feature expansion algorithm.

The proposed feature expansion approach can adopt any
measure M to extract the characteristics in time series data,
where the characteristics of the data is represented by the
number of induced coefficients NM from M. Moreover,
statistically driven NS features are included in the proposed
feature expansion approach. In summary, the feature expansion
T induces NE = NM + NS coefficients for X̃s[1 : Ts].
The classification performance with NE coefficients can be
measured by

A(NE) =
TP + TN

TP + TN + FP + FN
× 100(%) (2)

where TP , TF , FP , and FN denote true positive, true
negative, false positive, and false negative, respectively.

Finally, the number of expanded features is optimally
determined as N∗

E such that it can maximize the accuracy
A(NE) defined in (2), i.e.,

N∗
E = argmax

∀NM∈{N∩[0, l
2 ]},l<tsp

A(NE). (3)

In this paper, all possible values of NE are evaluated by
machine learning algorithms to determine N∗

E ,

The proposed feature expansion procedure is shown in
Fig. 3.

III. EXPERIMENT

A. Experiment Setup

In this paper, we consider the 1-D pupil size data col-
lected from left and right eyes of 35 participants (i.e., P =
{1, 2, . . . , 35}) measured at 30Hz. The data sample in X̃ for
pupil sizes is generated by considering the deviation from the
mean pupil size in the base response for each participant p and
the average of them per second [6]. Each participant p ∈ P
had 2 states s ∈ {1, 2} = S, which represents learning (s = 1)
state and post learning (s = 2) state, respectively.

We consider two measures {MF ,MA} ∈ M for FFT
(Fast Fourier Transform) and ARIMA (Auto Regressive Inte-
grated Moving Average) that return the number of coefficients
{NF , NA} ∈ NM, respectively. FFT is a mathematical trans-
form representing time domain data into the frequency domain
by decomposing different frequency sinusoidal waves. The
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Fig. 4. Performance of the proposed feature expansion over NE .

number of positive coefficients NF is obtained by FFT for the
data with length l. The other measure is ARIMA, a widely used
method to analyze time series data based on its past values,
which can capture the existing patterns in non-seasonal series.
The ARIMA model is characterized by three parameters, p, d,
q, where p is the number of lag observations, d is the number of
differences needed for stationarity, and q represents the number
of lagged value for errors [7]. We determined the number of
parameters p, q as NA, and d = 0 since X̃sp is assumed to be
stationary. For S , we use mean, standard deviation, variation,
skewness, kurtosis, median absolute deviation, interquartile
range (IQR) and standard error.

The optimal number of expanded features N∗
E in (3) is

determined by evaluating the performance of model with Ts

driven by different set of (NF , NA, l). The performance is
evaluated by the machine learning based classifiers, which
are Ensemble, Random Forest, Logistic Regression, and Naı̈ve
Bayes [8]–[12].

B. Experiment Results

The classification performance based on the proposed
feature expansion is shown in Fig. 4. For performance com-
parison, we consider prior work [13] that also solves the
classification problem for pupil size data. Unlike the proposed
feature expansion approach, the work in [13] does not expand
the features. Rather, it exploits the generation of new data
points by grouping the original data points. This approach
cannot consider the characteristics of time series data.

Fig. 4 shows the accuracy achieved by several machine
algorithms for classification with NE and l = 200. It is clearly
observed that the accuracy significantly depends on the number
of expanded features NE and each algorithm has different N∗

E
that achieves the best performance.

Table I shows the classification accuracy of the proposed
feature expansion. The proposed approach shows 76%-81%
accuracy while kernel SVM (Support Vector Machine) and
kNN (k-Nearest Neighbors) used in [13] only achieves 64%-
76% accuracy, depending on the number of grouped data points
from 1 to 60 [13]. For the proposed approach, parameters
are optimized, i.e., 23-37 features are determined as N∗

E for
each algorithm with l. The experiment results confirm that the
frequency and temporal characteristics features in data should

TABLE I. THE COMPARISON OF CLASSIFICATION PERFORMANCE

Experiment [13] Proposed method

Algorithm kernel
SVM kNN Ensemble Random

Forest
Logistic

Regression
Naı̈ve
Bayes

A(%) 64-75 64-75 79.2453 81.2498 79.3103 76.4706
N∗

E , l - - 37, 240 35, 201 23, 220 23, 248

be explicitly considered besides statistical features in order to
achieve better performance.

IV. CONCLUSION

In this paper, we propose a feature expansion approach
that transforms 1-D time series data into multi-dimensional
data, leading to improved classification performance. Since
blind adoption of machine learning algorithms on 1-D data
classification may show limited performance, we propose to
expand the features of 1-D data to multiple dimensional
data. The proposed approach can be generalized by including
more feature extraction measures and statistical methods. We
confirm that the proposed feature expansion is effective for
actual biosensor data, i.e., pupil size data, as it improves the
classification accuracy.
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