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Abstract—In this paper, we design a deep learning framework
for the power allocation problems in massive MIMO networks.
In particular, we formulate the max-min and max-product power
allocation problems by using signal-to-interference-plus-noise
ratio (SINR) and signal-to-leak-plus-noise ratio (SLNR) criteria
for linear precoder design. Multiple base stations are deployed
to serve multiple user equipments, the power allocation process
to each user equipment takes long processing time to converge,
which is inefficient approach. We tackle this problem by designing
a framework based on deep neural network, where the user
equipment position is used to train the deep model, and then it
is used to predict the optimal power allocation according to the
user’s locations. The resulting deep learning helps to reduce the
processing time of the system in determining the optimal power
allocation for the user equipment. Compared to the standard
optimization approach, the deep learning design helps to obtain
the optimal solution of the power allocation problem within a
short time via a quick-inference process. Simulation results show
that the SINR criterion outperforms the SLNR one. Meanwhile,
deep learning performance in predicting power allocation gets
excellent results with an accuracy of 85% for the max-min
strategy and 99% for the max-product strategy.

Index Terms—Deep neural networks, massive MIMO, power
allocation, signal-to-leak-plus-noise ratio (SLNR), signal-to-
interference-plus-noise ratio (SINR).

I. INTRODUCTION

In massive multiple-input multiple-output (MIMO), the base
station (BS) with large antenna arrays (hundreds of antennas)
can serve many users simultaneously [1]. Massive MIMO has
been emerged as an advanced wireless network technology to
provide high spectral and energy efficiencies. Thus, deploying
a larger number of antennas will increase the throughputs for
the uplink and downlink in a dynamic wireless propagation
environment. However, the author in [1] only discussed the
effect of changing the number of antennas on the throughput
value. The author in [2] focused on improving the spectral
efficiency by using join spatial division and reuse (JSDR)
carrier sensing schemes to improve the spectral efficiency (SE)
by considering multiplexed signaling. However, the paper did
not consider the efficiency of transmit power allocation. In
massive MIMO systems, the transmit power can be allocated
in a small area to offer large improvements of throughput and
energy efficiency [3]. The author in [4] worked on hybrid
user pairing (HUP) for spectral and energy efficiency for
multiuser multiple-input single-ouput (MISO) nonorthogonal
multiple access (NOMA) downlink systems with simultaneous

wireless information and power transfer (SWIPT). However,
the author only focused on the problem of user pairing by
using conventional methods, which took a long processing
time to obtain the optimal power allocation solution.

Deep learning (DL) has been applied in wireless communi-
cations to solve many problems such as prediction of power
allocation with signal-to-interference-plus-noise ratio (SINR)
criterion [5]. In [6], DL was used for channel estimation in
MIMO systems with signal-to-noise ratio (SNR). Moreover,
in [7], deep learning was used to determine link scheduling
based on the positions of the transmitter and receiver. The
author in [8] focused on the deep neural network (DNN) to
predict the secrecy performance on physical layer security.
The author in [9] studied DNN based relay selection scheme
to evaluate and improve the end-to-end throughput in wireless-
powered cognitive Internet-of-Things (IoT) networks. Never-
theless, it does not discuss power allocation. The author in [10]
concentrated on deep learning evaluation of short-packet com-
munication in wireless-powered cognitive IoT network. DL
demonstrates the ability to study historical data and generates
patterns to predict results with unprecedented input data [7]–
[12].

In this paper, we design deep learning (DL) framework for
the precoder design in downlink massive MIMO networks. In
general, the minimum leakage, indicated by signal-to-leakage-
plus-noise ratio (SLNR), and maximum per-stream, indicated
by signal-to-interference-plus-noise ratio (SINR), are two es-
sential criteria for precoder design in MIMO systems [13]. In
SINR, BS chooses user equipment (UE) with estimated SINR
one by one; on the other hand, in SLNR, BS chooses the user
with the largest SLNR. Due to a large number of BSs and
UEs, allocating power to user equipment at the BS renders a
complex problem, which is difficult to solve efficiently. The
main contributions of the paper can be summarized as follows:

• We propose two criteria, namely, SINR and SLNR, to
solve max-min and max-product power allocation prob-
lems in massive MIMO systems.

• We design a DL framework to achieve the optimal
solution of the power allocation for the considered system
setup based on the position information of UE. The DL
approach aims to reduce the complexity in determining
the power allocation to UE. Thus, determining the power
allocation can be done in real-time with the position of
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the user equipment moving around.
• Simulation results will be compared with conventional

methods to show the performance of the deep neural
network design. The performance of the proposed DNN
has good results with an accuracy of 85% to 99%.

Notation: Matrices are denoted by bold-face, upper-case
letters (R), vectors are bold-face, lower-case letters (w), and
scalars with lower-case letters (x). NC(0, I) is circularly
symmetric complex Gaussian distribution with zero mean and
correlation matrix I. ‖.‖ stands is the vector’s Euclidean norm.
The complex numbers denote as C, and IM is M×M identity
matrix.

II. SYSTEM MODEL

We consider a downlink multiuser multicell massive MIMO
system, where a BS with M antennas in each cell l is deployed
to serve K UEs shown in Fig. 1. The SINR and SLNR
approaches are used to determine the max product SINR and
max product SLNR strategies. SLNR is employed to reflect a
user’s leakage capacity to all other users [13]. Higher SLNR
indicates greater channel gain and lower leakage capacity [14].
It is worth noting that a user’s leakage power is simply an
intrusion from other users’ perspectives. Consequently, when
all UE have low leakage energy, which means that each UE has
minimal interference energy from others. Besides, the benefit
of SINR is that a higher SINR directly translates to a higher
rate. The calculation of SINR, on the other hand, requires all
other users’, which is challenging to know precisely.

Fig. 1. The proposed multiuser multicell massive MIMO systems.

The received signal for user i in cell l can be expressed as

yli = hliwliςli +

K∑
i=1,i�=1

hliwliςli + nli, (1)

where hi is the user’s channel vector i, nli ∼ NC(0, ρli) is
additive white Gaussian noise, wli is the unit-norm beamform-
ing vector for user i in cell l, and ςli is the DL data signal for

user i in cell l. The SNR per-user can be described as 1/σ2
i .

The SINR is defined as

SINRli =
‖hiwi‖2∑N

k=1,k �=i ‖hiwk‖2 + σ2
. (2)

The calculation of SINR requires the information of all users’
wk, which is challenging to know precisely. On the other hand,
the SLNR of the user i in cell l is defined as

SLNRli =
‖hiwi‖2∑N

k=1,k �=i ‖hkwi‖2 + σ2
. (3)

The SLNR is referred to user i’s leakage power to all other
users. Larger channel gain and lower leakage power are
associated with higher SLNR. As a result, all users have low
leakage capacity, which means that each user is subjected to
minimal interference from others. It is worth noting that a
user’s leakage power is simply the intrusion from other users’
viewpoints. As compared to the SINRi, the measurement of
SLNRi does not include other users’ beamforming vectors wk,
k �= i.

We denote the channel between UE i in cell l and BS j as
hj
li ∈ CM , it can be expressed as

hj
li ∼ NC(0M ,Rj

li), (4)

where Rj
li is the spatial correlation matrix known in BS, which

is normalized by βj
li = 1/Mtr(Rj

li). The average channel gain
from antenna at BS j in cell l to UE i and can be modeled as

βi
li = γ − 10αlog10

(
djli
1km

)
dB, (5)

where the median channel gain at a 1km reference distance is
determined by γ = -148 dB, and α = 3.76 is the coefficient
of pathloss, djli is the distance between UE i in cell l and
BS j, djli = ‖xj

li‖ with xj
li ∈ R2 is the Euclidean space’s UE

position. It is worth noting that shadowing should be taken into
account as well in (5). However, a log-normal distribution is
usually used to model this, then resulting in a channel model
that is not spatially consistent. In other words, two UEs nearby
will not be uncovered to the same channel. To solve this
problem, channel models based on ray tracing or recorded
measurements should be used.

A. Channel Estimation
The channel vectors at BS j are estimated by using pilot-

based channel preparation. We assume that the BS and UEs
are perfectly synchronized. They follow a time-division duplex
(TDD) protocol in which the DL data transmission process is
followed in the UL by a channel estimation training phase.
There are τp = K pilots (that is pilot reuse factor of 1) and
the same pilot is used by UE i in every cell. Using the total UL
pilot power of ρtr per UE, the standard estimation technique
of minimum mean squared error (MMSE) with BS j obtains
the estimates of ĥj

li as

ˆ
hj
li = Rj

liQ
−1
li

(
L∑

l′=1

hj
l′i +

1

τp

σ2

ρ
nli

)
∼ NC

(
0,Φj

li

)
, (6)
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where Qli =
∑L

l′=1 R
j
l′i +

1
ρtr IM , nli ∼ NC(0, IM ) is noise

and Φjli = Rj
liQ

−1
li . The estimator error is h̃j

li = hj
li − ĥj

li ∼
NC(0,R

j
li −Φj

li) is indpendent of ĥj
li.

B. Downlink Spectral Efficiency

The BS in cell l transmits the DL signal xli =
∑K

i=1 wliςli
where ςli ∼ NC(0, ρli) is the DL data signal for UE i in cell
l, allocated to a precoding vector wli ∈ CM that defines the
transmission’s spatial directivity and satisfies ‖wli‖2 = 1 so
that ρli represents the transmit power.

In massive MIMO, the following hardening bound can be
used to compute an achievable DL SE [15]. The DL ergodic
channel capacity of UE i in cell l is lower bounded by

SEdl
li =

τd
τc
log2(1 + SINRdl

li )[bit/s/Hz], (7)

or

SEdl
li =

τd
τc
log2(1 + SLNRdl

li )[bit/s/Hz], (8)

where the standards are based on the channel’s actualizations.
It is worth noting that the UE achieves the lower bound

above by treating the mean of its precoded channel as the
true one. For channels that show channel hardening, this is a
rational assumption [16]. However, channels with little to no
hardening suffer a loss.

C. Precoder Design

Unlike the UL described in [16], finding the optimal
precoder is a challenge because DL SE in (2) and (3) relies
on the {wli} precoding vector of all UEs across the network.
Based on the duality UL-DL [16], a suitable heuristic approach
is to choose wjk as

wjk =
vjk

‖vjk‖
, (9)

where wjk is predoding vector of UE k in cell j and vjk is
the combining vector for detecting the UL signal sent by UE
k in cell j. In this paper, we assume that vjk is built using
maximum ratio (MR) combining,i.e.,

vMR
jk = ĥj

jk, (10)

and multicell MMSE (M-MMSE) combining [17], [18]

vM-MMSE
jk =

(
L∑

l=1

K∑
i=1

ĥj
li(ĥ

j
li)

H + Zj

)−1

ĥj
jk, (11)

where

Zj =

L∑
l=1

K∑
i=1

(
Rj

li = Φj
li

)
+

φ2
ul

ρul
IM . (12)

Base on (11), the M-MMSE is optimal but has high com-
putational complexity. On the other hand, MR is suboptimal
(not just for M ’s finite values, but even for M is ∞), but it
has the simplest complexity of combining schemes.

III. POWER ALLOCATION

The downlink (DL) spectral efficiency (SE) of user equip-
ment (UE) k in cell j, written on (7) and (8), is averaged for
small-scale fading realization, so the DL SE is just a function
of the large-scale fading statistic initial coding preference. As
compared to single antenna systems, this is a unique aspect of
massive MIMO that significantly simplifies power allocation
problems [16].

There are two famous examples among the various power
allocation policies, namely the max-min fairness and max
product strategies, which can be formulated as

max
{ρjk:∀j,k}

min
j,k

SEdl
jk, (13)

subject to
K∑

k=1

ρjk ≤ P dl
max, j = 1, ..., L.

and

max
{ρjk:∀j,k}

L∏
j=1

K∏
k=1

SINRdl
jk (14)

or

max
{ρjk:∀j,k}

L∏
j=1

K∏
k=1

SLNRdl
jk (15)

subject to (13) for maximum production, where P dl
max denotes

the maximum DL transmit power. The following Monte Carlo
technique is needed to compute the optimal powers, regardless
of the power allocation strategy. To find the optimal solution
in determining the power allocation is shown in the algorithm
1.

The (13) can be solved using a bisection technique, which
involves solving a series of convex problems, while (14) and
(15) can be solved using geometric programming. As a result,
both (13),(14) and (15) must be solved with a polynomial
or quasi-polynomial complexity. When the solution must be
obtained in real-time, that is not quick enough to be im-
plemented before the UEs’ positions change, and the power
allocation problem must be solved again because a polynomial
complexity may increase significantly.

IV. DEEP NEURAL NETWORK DESIGN

In this section, we develop a DL framework for power
allocation in multicell massive MIMO systems. As shown in
Fig. 2, the DNN approach is different from the conventional
optimisation approaches which use (13), (14) and (15) re-
quiring knowledge of channel state information {hiwi} and
{hiwk} as well as {hkwi} in (2) and (3), and take much time
to obtain optimal solutions. In our proposed DL framework,
the optimal solution of problem (13) will be obtained from
solving by using algorithm 1 or conventional optimization
method and the output will be used as the target of the DNN
model. If the output or the optimal solution gets error, the
DNN model will learn until the minimize error can be found.
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Algorithm 1 Power Allocation Procedure for Solving Problem
(13)
Input: SINR, SLNR, Pmax, τd

τc
Output: Power optimum

Initialization :
Set rate lower =0, rate uppper = log2 (1+ Pmax×
min(SINR) or rate uppper = log2 (1+ Pmax× min(SLNR),
and accuracy (delta) = 0.01.

1: while rate upper - rate lower > delta do
2: rate candidate = (rate lower + rate upper)/2
3: for j=1 to 4 do
4: for k=1 to K do
5: if SINR(k,j) > 0 or SLNR(k,j) > 0 then
6: Solve the problem (14) or (15)

scaling = scaling < 0
7: end if
8: end for
9: end for

10: Scaling = Scaling > 0
11: if solve then
12: feasible = false

SINR or SLNR solution = [ ]
13: else if scaling > 1 then
14: feasible = false

SINR or SLNR solution = SINR or SLNR
15: else
16: feasible = true

SINR or SLNR solution = SINR or SLNR
17: end if
18: if feasible then
19: rate lower = rate candidate

SINR best = SINR candidate, or SLNR best = SLNR
candidate

20: else
21: rate upper = rate candidate
22: end if
23: end while
24: Solve the problem (7) or (8) for the optimal solution power

allocation

The UE positions are used as the input of DNN input
because they have the essential characteristics of propagation
channels and network interference and the output is the
optimal power allocation. The problem is to learn the unknown
position between the solution to (13), (14) or (15) and the
2KL geographical UE positions x = {xj

li; ∀j, l, i} ∈ R2KL

for any given cell j. This is accomplished by taking advantage
of DNNs’ well-known property of being universal function
approximators [20], [11]. We use a feedforward neural network
with a 2KL-dimensional input layer, N hidden layers, and a
K + 1-dimensional output layer to produce an approximation
ρ̂j = [ρ̂j1, ...ρ̂jk] of the optimal power allocation vector ρ�j ,
as shown in Fig. 3. Since we also make the DNN learn∑K

k=1 ρ
�
jk to fulfill the power constraint and improve the

estimation accuracy, the output layer has size K+1. After doing
feedforward, we will get an error or the difference between

Fig. 2. The DNN-based approach to learn optimization via minimizing the
error of solution between conventional algorithm and DNN model [19].

Fig. 3. The proposed DNN model for power allucation, where the rectified
linear unit is used as the activation function in every hidden layer.

the output and the target. We will then update the weight
using backpropagation, which is done continuously until the
iteration is fulfilled [20]. The DNN will calculate the best

TABLE I
MODEL OF DEEP NEURAL NETWORK ON MAX-PRODUCT STRATEGY

Size Activation function
Input 40 -

Layer 1 512 ELU
Layer 2 512 ELU
Layer 3 256 ELU
Layer 4 128 ELU
Layer 5 12 ELU
Layer 6 6 LINEAR

power allocation strategy for inputs that are not in the training
set. As a result, if the UEs’ positions in the network change,
the power allocation can be changed by simply feeding the
new positions to the DNN, rather than solving (13), (14) or
(15). Therefore, the proposed solution can significantly reduce
complexity and allow for real-time power allocation based on
UE positions. The layer structure of the deep learning design
used for the max-product strategy is shown in Table I while
that for the max-min strategy is shown in Table II.
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TABLE II
MODEL OF DEEP LEARNING NEURAL NETWORK ON MAX-MIN STRATEGY

Size Activation function
Input 40 -

Layer 1 1024 ELU
Layer 2 1024 ELU
Layer 3 512 ELU
Layer 4 512 ELU
Layer 5 5 LINEAR
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Fig. 4. Capacity of the Spectrum Efficiency by Transmit Power.

V. SIMULATION RESULTS

In this section, we present illustrative numerical examples
for the achievable performance of the proposed deep learning
approach. In particular, we set in the simulations the number
of base stations L= 4, the number of antennas of each BS
M=100, and the number of user equipments in each BS K=5.
The transmit power is set as 50mW, 100mW, and 200mW.
A system with a transmit power of 50mW has the smallest
capacity, while a system obtains the largest capacity with
a transmit power of 200mW. Besides that, as the spectral
efficiency increases, the capacity will decrease, as shown in
Fig. 4. We display the cumulative distribution function (CDF)
of the DL SE per UE. The UE position is random and shadow
fading relization to evaluate the output of the DNN-based
power allocation. We consider MR and M-MMSE with two
criteria. For the DNN, we generate 10k samples, where 90%
of samples is used for training and the remainder is used
for validation. And we regenerate 100 dataset for the test
of the DNN. The results are shown in Fig. 5. It is shown
that the results with M-MMSE precoding on two SINR and
SLNR criteria show that the use of DNN is very good with
an accuracy of up to 99%.

While the SINR criteria shows a better performance than
the SLNR criteria, Fig. 6 shows that the use of employing
MR precoding shows a low level of accuracy compared to M-
MMSE. DNN and the conventional method not really match,
but the results are still good. Figures 5 and 6 illustrate the
CDF of spectral efficiency for each user equipment. M-MMSE
precoding is computationally more complex compared to MR
precoding. The explanation is that in MR, precoding only
considers the allocation power based on the desired signal
gain. At the same time, in M-MMSE, it is done by considering
the signal strength that interferes because DNN gets input in
the form of the position of each UE on the network so that

the use of M-MMSE precoding can be used optimally.

Fig. 5. CDF M-MMSE Precoding of the max product DL SE per UE.

Fig. 6. CDF MR Precoding of the max product DL SE per UE.

The SINR is focused on a UE with interference from
another UE, while SLNR is focused on how much power
leakage rate there is in the UE, the SINR performance results
are better than using SLNR selecting the user. The max-

Fig. 7. CDF M-MMSE precoding of the max-min DL SE per UE.

min strategy approach is shown in Fig. 7 and Fig. 8.
The probability of displaying a result is almost the same as
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Fig. 8. CDF MR precoding of the max-min DL SE per UE.

for the max-product approximation. Performance from SINR
shows better performance than SLNR. However, the use of
M-MMSE precoding shown in Fig. 7 has better results than
using MR precoding, shown in Fig. 8. The prediction results
of DNN against conventional methods get not too promising
results on MR precoding, which is only 85%. The process
in the max-min policy has a higher difficulties than the max-
product policy, so we need a more significant number of neural
networks and training.

VI. CONCLUSIONS

This paper implemented deep learning with two-criterion
approach (SINR and SLNR) to allocate downlink power in
massive MIMO networks with MR and M-MMSE pre-codes.
Analysis on massive MIMO behavior was performed with L =
4 cells and K = 5 UE per cell. The transmit power at 50mW
was shown to have the smallest value since the increment of
transmit power affected the received power in user equipment.
Thus, each rise in transmit power will increase the channel
capacity. On the other hand, the SE rate is inversely propor-
tional to the channel capacity. Therefore, during the rise of
SE rate, the bandwidth also increases, resulting in reduced
channel capacity. Two strategies in power allocation were
considered, namely max-min and max-product. We showed
that the trained DNNs could learn how to allocate power
to the UE in each cell with both strategies. Furthermore,
relying solely on the UE’s location in the network significantly
reduced the optimization process’s complexity and processing
time. The simulation results showed that DNNs with SINR
criteria using M-MMSE precode performed better than MR-
based precode due to the nature of SINR that considered
the allocation of received power with interference from other
UE power—coupled with M-MMSE that allows DNNs to
make the most available information. However, since the max-
min policy is more difficult for DNNs to learn, more neural
networks and extensive training parameters were required.

ACKNOWLEDGMENT

This work was supported by National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)

(NRF-2019R1A2C1083996).
Prof. Beongku An is the corresponding author.

REFERENCES

[1] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” IEEE Trans. Wireless Commun.,
vol. 9, no. 11, pp. 3590–3600, 2010.

[2] J. Lee, K. J. Choi, and K. S. Kim, “Massive MIMO full-duplex for
high-efficiency next generation WLAN systems,” in 2016 Int. Conf. Inf.
and Commun. Technol. Convergence (ICTC), Jeju, Korea (South), 2016,
pp. 1152–1154.

[3] T. Le-Ngoc, “Keynote talk 1: 5G: From MIMO to massive MIMO,” in
2016 3rd Nat. Found. for Sci. and Tech. Develop. Conf. Inf. and Comput.
Sci. (NICS), Danang, Vietnam, 2016, pp. xviii–xix.

[4] T.-V. Nguyen, V.-D. Nguyen, D. B. da Costa, and B. An, “Hybrid User
Pairing for Spectral and Energy Efficiencies in Multiuser MISO-NOMA
Networks With SWIPT,” IEEE Trans. Wireless Commun., vol. 68, no. 8,
pp. 4874–4890, 2020.

[5] L. Sanguinetti, A. Zappone, and M. Debbah, “Deep Learning Power
Allocation in Massive MIMO,” in 2018 52nd Asilomar Conf. on Signals,
Syst., and Comput., Pacific Grove, CA, USA, 2018, pp. 1257–1261.

[6] J.-M. Kang, C.-J. Chun, and I.-M. Kim, “Deep Learning Based Channel
Estimation for MIMO Systems With Received SNR Feedback,” IEEE
Access, vol. 8, pp. 121 162–121 181, 2020.

[7] W. Cui, K. Shen, and W. Yu, “Spatial Deep Learning for Wireless
Scheduling,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1248–
1261, 2019.

[8] K. Shim, T. N. Do, T.-V. Nguyen, D. B. da Costa, and B. An, “Enhancing
PHY-Security of FD-Enabled NOMA Systems Using Jamming and User
Selection: Performance Analysis and DNN Evaluation,” IEEE Internet
Things J., pp. 1–1, 2021.

[9] T.-V. Nguyen, T.-N. Tran, K. Shim, T. Huynh-The, and B. An, “A Deep-
Neural-Network-Based Relay Selection Scheme in Wireless-Powered
Cognitive IoT Networks,” IEEE Internet Things J., vol. 8, no. 9, pp.
7423–7436, 2021.

[10] C. D. Ho, T.-V. Nguyen, T. Huynh-The, T.-T. Nguyen, D. B. da Costa,
and B. An, “Short-Packet Communications in Wireless-Powered Cog-
nitive IoT Networks: Performance Analysis and Deep Learning Evalu-
ation,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2894–2899, 2021.

[11] R. H. Y. Perdana and F. Fibriana, “An intelligent switch with back-
propagation neural network based hybrid power system,” Journal of
Physics: Conference Series, vol. 983, p. 012056, mar 2018.

[12] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to Optimize: Training Deep Neural Networks for Interference
Management,” IEEE Trans. Signal Process, vol. 66, no. 20, pp. 5438–
5453, 2018.

[13] A. E. Rakhmania, P.-Y. Tsai, and O. Setyawati, “Combined per-user
SLNR and SINR criterions for interference alignment in uplink coor-
dinated multi-point joint reception,” in Signal and Inf. Process Assoc.
Annu. Summit and Conf. (APSIPA), 2014 Asia-Pacific, Siem Reap,
Cambodia, 2014, pp. 1–5.

[14] X. Xia, G. Wu, S. Fang, and S. Li, “SINR or SLNR: In Successive
User Scheduling in MU-MIMO Broadcast Channel with Finite Rate
Feedback,” in 2010 Int. Conf. Commun. and Mobile Comput., vol. 2,
Shenzhen, China, 2010, pp. 383–387.

[15] H. Y. Thomas L. Marzetta, Erik G. Larsson and H. Q. Ngo, Fundamen-
tals of Massive MIMO. Cambridge University Press, 2016.

[16] Björnson, Emil and Hoydis, Jakob and Sanguinetti, Luca, Massive
MIMO Networks: Spectral, Energy, and Hardware Efficiency, 2017.

[17] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO Has
Unlimited Capacity,” IEEE Trans. Wireless Commun., vol. 17, no. 1,
pp. 574–590, 2018.

[18] S. Mandal and S. Gauni, “Energy efficiency of single cell and multi cell
Massive MIMO system MMSE estimation,” in 2017 Int. Conf. Nextgen
Electron. Technologies: Silicon to Softw. (ICNETS2), Chennai, India,
2017, pp. 66–70.

[19] M.-H. T. Nguyen, E. Garcia-Palacios, T. Do-Duy, L. D. Nguyen, S. T.
Mai, and T. Q. Duong, “Spectrum-Sharing UAV-Assisted Mission-
Critical Communication: Learning-Aided Real-Time Optimisation,”
IEEE Access, vol. 9, pp. 11 622–11 632, 2021.

[20] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into Deep
Learning, 2020, https://d2l.ai.

92


