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Abstract—In many online networking platforms whether they
are online social networks or academic citation networks, com-
munity label memberships are applied to the nodes to generalize
overlaps based upon common features or associations. The
relatively recent methods in graph convolutional neural networks
has provided new tools to infer community labels of nodes
but they still depend upon a labeled dataset to be provided.
Obtaining these labels can be costly and methods to reduce the
required number of labels needed can speed up the process
and reduce costs. This study explores different strategies for
selecting nodes to be used as training data showing which
strategies work better or worse and on different percentages
of the network’s nodes. An unsupervised approach of deciding
the best active learning sampling direction (i.e. ascending or
descending selection of nodes in terms of importance) procedure
is derived by fundamental network properties. The conclusion is
supported on both simulated and real data.

Index Terms—network science, social networks, machine learn-
ing, graph neural networks, active learning

I. INTRODUCTION

The study of networks [1] shows that they are ubiquitous
in nature and commerce. Many complex processes that are
studied [2] have shown that behaviors are defined or closely
dependent on their network structure. Simplifying network
nodes into a smaller set of labels, commonly through com-
munity detection where the connectivity of the nodes in the
network directs the community memberships, is a common
task in this space. This labelling process assists in the effort
to simplify the node set by generalizing them with respect to
aggregated behaviors across allocated groups. The principle
underlying the ability to group nodes together in this fashion
relies on homophily [3]. Examples of this are found in the
work of [4] which studies how social network connections
created from friendships or interests can drive political en-
gagements differently.

Labels of nodes can be inferred using standard classification
methods such as logistic regression, which are predominantly
reliant on the node feature information, after a training phase.
However, these methods do not consider the supplementary
node connectivity information. Additionally, community de-
tection algorithms (i.e. Louvain [5]) take into account node
connectivity information but not node feature information.
Graph neural networks (GNN) combine both information
into a framework for inference (i.e. label prediction). The
Simple Graph Convolutional neural network (SGC) [6] (see
Methodology section for more details) simplifies GNNs to
a logistic-regression-like formulation while maintaining the

node connectivity information. The computational efficiency
of this model allows the practical experimentation done in
this study.

In many cases, labeled data is limited and costly to produce.
The field of active learning focuses on ordering the available
labeled data prior to the training process for the purpose of
strategically showing the model more informative nodes ear-
lier, allowing it to generalize with less data while maintaining
a similar (or superior) performance [7]. This paper focuses
on the application of active learning to graph neural networks
(GNN) by utilizing available node ranking algorithms such
as node connectivity densities (i.e. degree), pagerank [8], and
voterank [9]. Similar to [10], this work experiments with
bidirectional sampling (i.e. ascending and descending) of these
algorithms’ rankings.

Node classification task across four real graph datasets
are optimized using the six node selection processes (i.e.
ascending & descending selection along 3 node importance
evaluators) to study the correlation between the superior
sampling process and network topology. Results show that
the sampling direction (i.e. ascending vs descending selection
of samples with respect to their importance rankings) is
dependent on network topology. The results are empirically
reverse engineered using an unsupervised process to allow
the prediction future applications to derive the best sampling
method as opposed to the brute force experimentation provided
in this study. Generally, networks with sparse topologies are
better performant in node classification tasks when the active
learning process uses a descending node selection; conversely,
dense networks prefer ascending node selection.

Section II delineates the methodology, including descrip-
tions of the data, sampling methods, and the employed graph
convolutional neural network. Section III shows the results
along with a discussion of the results. Lastly, section IV
describes the final takeaways and some potential future work.

II. METHODOLOGY

A. Data

An attributed graph G = (X,A, y) is represented by three
components: an adjacency matrix A ∈ RN×N , a feature
matrix X ∈ RN×D, and a node label vector y ∈ RN .
Real datasets were gathered from online resources [11]–[14].
Synthetic attributed graph data sets were generated to imitate
scale-free (right-skew degree distribution) networks which are
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Dataset Ref.
#Nodes
#Edges
#Classes

Description

Cora [11]
2708
5278
7

Scientific publications (nodes), defined by a binary vector indicating the
presence of words in the paper (features), connected in a paper citation web
(edges) and categorized by topic (labels).

Citeseer [12]
3327
4614
6

Scientific publications (nodes), defined by a binary vector indicating the
presence of words in the paper (features), connected in a paper citation web
(edges) and categorized by topic (labels).

Pubmed [13]
19717
44325
3

Diabetes-focused scientific publications (nodes), defined by a binary vector
indicating the presence of words in the paper (features), connected in a paper
citation web (edges) and categorized by topic (labels).

Amazon-Photo [14]
7650
143663
8

Photos sold at Amazon (nodes), defined by a bag-of-words encoded vector of
the product’s reviews, connected in groups of products which are frequently
bought together (edges), and grouped into product categories.

commonly found in practice (Figures 1 and 2) by using the
Barabási–Albert preferential attachment model [15].

Each synthetic attributed graph contains three communities
clusters (subgraphs) with 100 nodes per community. Each
subgraph is generated following Barabási–Albert preferential
attachment model. On each subgraph, we collect a subset
of nodes (using weighted random sampling proportional to
node degree distribution) and then assign random edges be-
tween pairs of subsets of nodes. Hyperparameters (number
of preferential attachment for Barabási–Albert model, prob-
ability of random edges) are then established to control the
connectivity between subgraphs (seen in Figures 1 and 2).
The node feature matrix is generated by first creating a set of
three isotropic Gaussian clusters (100 observations per each
cluster) in a two dimensional feature space and then assigning
these observations as node features. We control the amount
of overlap between three clusters by adjusting two cluster
hyperparameters (the distances between cluster centers and the
within cluster standard deviation).

B. Sampling methods

Two procedures of sampling are considered in this study,
namely descending and ascending. In descending sampling,
training instances are selected by gradually acquiring from
the most important nodes to the least important ones. On
the contrary, ascending sampling gradually selects training
samples starting from the least important nodes to the most
important ones.

Three different criteria are used to evaluate a node’s im-
portance (centrality) for sampling orders. In degree sampling,
we acquire nodes for training based on their corresponding
number of directly connected neighbours (i.e node’s degree).
The PageRank algorithm [8] derives a web page (node)’s rank
by accumulate its incoming neighbors’ ranks proportionally
to their total number of outgoing connections. The resulting
ranking represents the relative importance of pages in the
network. In this study, we apply PageRank to rank all the
nodes in our graphs and then sample them based on their
rankings. Lastly, the VoteRank algorithm [9] iteratively selects

a set of important nodes called spreaders using voting scores
given by the neighboring nodes. Once a node is selected as
spreader, it is excluded from next round of voting and its direct
neighbors’ voting abilities are also reduced. In this study, we
employ VoteRank to all nodes in the graph (by setting the
number of spreaders as the total number of nodes) and then
sample them based on their rankings.

C. Simple Graph Convolution (SGC)

SGC [16] is a simplified GNN model developed from
GCN [17] by removing non-linear activation functions be-
tween hidden layers and reparametrizing successive layers
into one single layer. This simplification reduces superfluous
complexity of GCN while retains superb performance on
many downstream tasks. The work of [18] illustrates SGC’s
expressive power in node classification task and proposes a
flexible regularization methodology to reduce the number of
parameters and highlight a sparse set of important features.

In this section, we briefly present the original SGC. An
attributed graph data set contains a graph G = (V ;A) and
a feature matrix X ∈ RN×D. The graph G composes of
V = (v1, v2, ..., vN ) is a set of N nodes (vertices) and
A ∈ RN×N is the adjacency matrix where each element
aij represents an edge between node vi and vj (aij = 0 if
vi and vj are disconnected). We define the degree matrix
D = diag(d1, d2, ..., dN ) as a diagonal matrix whose off-
diagonal elements are zero and each diagonal element di
capture the degree of node vi and di =

∑
j aij . Each row

xi of the feature matrix X ∈ RN×D is the feature vector
measured on each node of the graph. Each node i receives a
label from C classes and hence can be coded as one hot vector
yi ∈ {0, 1}C .

The GCNs and SGC add self-loops and normalize the
adjacency matrix to get the matrix S:

S = D̃− 1
2 ÃD̃− 1

2 (1)

where Ã = A + I and D̃ = diag(Ã). This normalization
allows successive powers of the matrix to not influence the
overall size the projections. The SGC removes non-linear
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Fig. 1. Network visualizations for the 35 generated simulations, each with 3 communities (colored). Traversing along the y-axis shows how these networks
topologies change when varying the distance within a communities. Traversing along the x-axis shows how the network topologies changes when varying
distance between communities.

Fig. 2. Degree distributions for the 35 generated simulations show that all settings create a relatively scale-free network. Traversing along the y-axis shows
how these networks topologies change when varying the distance within a communities. Traversing along the x-axis shows how the network topologies changes
when varying distance between communities.
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transformation from the kth-layer of the GCN resulting in a
linear model of the form:

Ŷ = softmax(S . . .SSXΘ(1)Θ(2) . . .Θ(K)). (2)

The SGC classifier is then achieved by collapsing the repet-
itive multiplication of matrix S into the kth power matrix
SK and reparameterizing the successive weight matrices as
Θ = Θ(1)Θ(2) . . .Θ(K):

Ŷ = softmax(SKXΘ). (3)

The parameter k corresponds to the number of ’hops’ which is
the number of edge traversals in the network adjacency matrix
S. k can be thought of as accumulating information from a cer-
tain number of hops away from a node (as described visually
in [16]). If k = 0 the methodology becomes equivalent to a
logistic regression application which is known to be scalable to
large datasets. Since the SGC introduces the matrix S as linear
operation the same scalability applies. The weight matrix Θ
is trained by minimizing the cross entropy loss:

L =
∑
l∈YL

∑
c∈C

Ylc ln Ŷlc (4)

where YL is a collection of labeled nodes.

D. Evaluation of Network Topology

The network topology was evaluated using the coefficient
of variation of the node’s degree distribution.

CVd =
µd

σd
(5)

where µd = 1
N

∑N
i=1 di is the average degree and σd =

1
N−1

∑N
i=1(di − µ)2 is the standard deviation of degree.

A low value of CVd occurs for networks which have high
variation in their degree distributions compared to the mean
degree. It indicates that important hubs (nodes) are highly
connected to other nodes. On the contrary, a high value of
CVd results from relatively low variation in degree distribution
compared to the mean degree where important nodes tends to
be less popular.

The feature information was evaluated using the coefficient
of variation of the node-to-node feature distances. For exam-
ple, node 1 is defined as a vector of distances between its
feature vector and all other nodes’ feature vectors. This de-
scription allows for an evaluation regarding a node’s centrality
in the feature space.

III. RESULTS

In this section, the correlation of the optimal sampling
direction for node classification task with network topology
is captured in simulations and real data. The results show
that no sampling method (i.e. degree, Pagerank, Voterank) is
uniformly superior in terms of accuracy. However, indepen-
dent of the ascending/descending, we see across the board a
higher number of cases where the more complicated sampling
procedures (i.e. Pagerank/Voterank) outperform Degree. While
we see an increase in performance, there is a trade-off with

computation time; nodes degree distribution can be computed
swiftly while Pagerank and VoteRank require complex evalu-
ation and hence, be more computationally expensive.

Dataset CVd Optimal sampling direction
Cora 0.75 Descending

Citeseer 0.82 Descending
Pubmed 0.6 Ascending

Amazon-Photo 0.69 Ascending
TABLE I

OPTIMAL SAMPLING RESULTS ON REAL DATASETS

Dataset information including degree coefficient of variation
and optimal sampling direction, as derived through a grid
search, can be found in Table I. The descending and ascending
optimal sampling directions are cleanly partitioned in the CVd

space. A numerical boundary would be useful to allow users
to calculated CVd and perform the active learning procedure
without having to experiment through grid search, as done in
this paper. From the results (Table I), it is hard to pinpoint an
exact threshold other than that it should likely be somewhere
between CVd = 0.69 and CVd = 0.75. Therefore, simulations
are conducted to resolve a finer resolution. Figure 3 shows a
contour plot containing the density of the CVd distribution for
ascending and descending sampling procedures. A partition is
found near CVd = 0.82, which is slightly higher than our
estimated window, which is likely caused by discrepancies
between the real and simulated data. Generally speaking,
however, these visualized distributions show significant levels
of partitioning on the vertical axis (CVd). In fact, a one-sided
t-test results concludes significance (pval = 6.7× 10−41).

Fig. 3. Simulations report a density of preferred (higher accuracy) sampling
direction as a function of network topology (y-axis) and feature similarity (x-
axis) shows that the sampling direction is dependent on the network topology.

In high CVd graphs (i.e Cora and Citeseer), all three
descending methods almost uniformly do better than the
ascending methods across training sizes (Figure 4). Apparent
performance improvements are made in terms of accuracy,
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especially at low train sizes (from s = 0.1 to s = 0.5).
As the training size gets closer to utilizing the full training
dataset (s = 1.0), sampling approaches are less selective
because, by definition, they are using more and more data
each iteration. The dominance of descending sampling in these
graphs might be explained by the fact that important (central)
papers of certain disciplines are usually cited by many papers
in that same discipline. Consequently, the most important
nodes contains crucial information about the class label and
are commonly referenced by papers within its discipline so
they are beneficial for node classification task.

a)

b)

Fig. 4. High CVd networks (Cora and citeseer) graphs have higher accuracies
when sampling nodes from the highest score to lowest score (i.e. ’descending’
methods), showing the effectiveness of the node ranking algorithms on a node
classification task.

Alternatively, we observe an opposite trend in low CVd

graphs (Pubmed and amazon-photo), where ascending sam-
plings prevail. Pubmed citation graph contains publications
about a specified domain and hence has a smaller scope
compared with other citation data sets like Cora and Citeseer
(Figure 5A). Important (central) papers across classes might
cite each other due to the close nature of their categories.
Therefore, important nodes contains a less differentiating
factor for classification tasks. On the other hand, less impor-
tant nodes might contain unique characteristics of the class
and render useful information for node classification task.

Amazon-photo graph exhibits closely connected clusters with
relatively low inter-cluster connectivity (Figure 5B). Popular
photos from different categories might possess similar features
(in term of reviews since they receive generally positive com-
pliments). Hence, sampling popular nodes is less desirable for
classification since their representations are indiscriminative.
Less popular photos might contain more defined characteristics
of its corresponding category. Therefore, lower score nodes
may contain higher information about the community and
hence be more beneficial for node classification.

a)

b)

Fig. 5. Low CVd networks (Pubmed and amazon-photo) graphs have
lower accuracies when sampling nodes from the lowest to highest score (i.e.
’ascending’ methods), showing the ranking algorithms are inversely beneficial
to the node classification task.

IV. CONCLUSIONS

Participants in networking platforms continue to upload
more data onto these platforms such as in academic literature
[19] and social networking [20] (being part of the always-on
generation [21], and efficient protocols [22]). It becomes a
question of efficiency of whether a subset of the nodes can
be sampled to provide information about other nodes with
unknown membership labels, and can be useful for e-health
[23]. The study here conducted on a set of networks covering
different information sources show that the best indicator
for whether nodes should be sampled in terms of ascending
or descending centrality is based upon the coefficient of
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variation of the degree of the nodes. Intuitively this can be
understood as being related to the sparseness of the network
topology. An implication of this is that when attempting to
infer labels of network participants, in an active learning
paradigm, understanding the general degree distribution for
communities can determine whether the sampling should be
done in the ascending or descending direction. Practitioners
can use the general rule of thumb (CVd > 0.8 should use
descending, otherwise ascending sampling direction) to avoid
the computational burden of computing grid searches.

Future work will entail applications in professional net-
working sites (ie LinkedIn) to improve the ability to adopt a
community of followers of a certain label, or finding the best
connections to develop a new affiliation label. These actions
can help navigate the labor market [24] for opportunities, or
to plan promotions into new markets.
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