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Abstract—The frequency scarcity imposed by the fast-growing
need for mobile data service requires promising spectrum aggre-
gation systems. The so-called higher-order statistics (HOS) of the
channel capacity (CC) is a suitable metric on the system perfor-
mance. While prior relevant works have improved our knowledge
of HOS characterization on the spectrum aggregation systems, an
analytical framework encompassing generalized fading models of
interest is not yet available. However, the expressions of HOS are
not correct in several previous research works. In this paper, we
present novel method by expressing the closed-form expression
of CC as the sum of weighted exponential terms and then invoke
multinomial expansion to obtain the required coefficients and
utilize MGF (Moment Generating Function) based maximum
ratio combining (MRC) diversity receivers technique over κ-µ
fading distribution to compute higher order moments. Also, we
provide correct, simplified and efficient HOS expressions for the
asymptotically low and high signal-to-noise regimes and provide
a detailed HOS analysis of κ-µ fading channel by obtaining vital
statistical measures, such as the amount of dispersion, skewness,
and kurtosis by the HOS results. Finally, all derived expressions
are validated via the Semi-infinite Gauss Hermite quadrature
method.

Index Terms—exponential-type approximation for channel ca-
pacity, prony’s approximation, higher-order statistics, κ-µ gen-
eralized fading distribution, multinomial theorem

I. INTRODUCTION

For the last six decades, the researchers are searching for
generalized techniques in computing the typical metric for
performance evaluation, i.e., channel capacity (CC) of the
fading channels. We find that the first-order statistics (FOS)
of the (CC) C̄ = E [log (1 + γ)] for a certain averaged SNR;
where, γ denotes the end-to-end instantaneous signal-to-noise
ratio (SNR), E[·] denotes the expectation operator, and log(·)
denotes the natural logarithm. also well-known as averaged
channel capacity (ACC) or ergodic channel capacity and
second-order statistics (SOS), i.e., the variance of the CC
has been widely studied in the literature, considering different
fading environments [1–7], and references therein.

Due to continually growing mobile data demand for future
wireless communication systems, it becomes more and more
difficult to allocate a wide and contiguous frequency band
to each user equipment and base station has brought about
increasing scarcity in the available radio spectrum. In the re-
search of wireless communications, the higher-order statistics
(HOS) of the channel capacity (CC) can fully explore the re-
liability of the signal transmission and can adequately explain
the CC dispersion induced by the heterogeneity that inherently
exists in spectrum aggregation systems [8]. Moreover, valuable
insights into the spectrum aggregation implications on the

transmission reliability can also be deduced by deriving the
HOS of the CC.

Lately, many theoreticians, practitioners, and researchers
[7, 9–17] directed their study on the HOS of CC to ensure the
reliability of wireless transmissions and its quality. Despite its
importance, [16] pointed out that HOS of the CC received
relatively scant attention among the researchers and in the
literature, due in part to the intractability of its analysis,
especially compared to the first-order statistics.

The references in [9] discussed multiple-input multiple-
output (MIMO) transmission over Rayleigh or Riciean fading
channels; they also discuss the HOS of the CC only for single-
link lognormal fading channels. Sagias et al. [10] showed
the probability density function (PDF)- based framework is
valid only for diversity combining receivers in Rayleigh and
Nakagami- m fading environments and presented the HOS
of the CC for several diversity receivers taking into account
the effects of independent and non-identically distributed
(i.n.i.d.) Nakagami-m fading channels. Later, in [11] the
authors presented the first-moment generating function (MGF)
based approach for the accurate HOS of CC analysis in
fading environments such that it eliminates all difficulties that
emerged from [7] and [10] investigated the HOS of the CC
for amplify-and-forward (AF) multihop systems over gamma
and generalized gamma fading channels. An example is a
generic framework for the asymptotic HOS of the CC over
independent and identically distributed (i.i.d.) Nakagami-m
fading channels were provided in [11]. Also, an MGF-based
approach for the HOS of the CC for L-branch MRC receivers
has been proposed in [11] with an example application of
correlated Nakagami-m fading channels. In particular, Yilmaz
& Alouini proposed in [13] a moment generating function
(MGF)-based approach for the ACC analysis, specifically
introducing how to unify the ACC analyses of diversity
combining and transmission schemes into a single MGF-based
analysis. The article, [14] studied HOS for the CC of equal
gain combining (EGC) Receivers Over Generalized Fading
Channels. Moreover, fruitful insights into the implications
of spectrum aggregation on transmission reliability can be
extracted by deriving the HOS of the channel capacity.

Despite its importance, there is still a gap in the literature in
calculating the HOS of the channel capacity correctly due to
its analysis’s intractability and hence received relatively little
attention in the literature. Most of the final expressions involve
complicated mathematical expressions and are not versatile
enough to be applied to generalized fading channels. Most of
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the literature for the generalized fading models, the expression
for calculating the higher-order statistics via MGF method
shown in terms of the Fox H or the Meijer- G functions
[11, 14, 16–20], which are computationally inefficient (their
infinite series representations are also not very attractive for
further manipulations). Moreover, more importantly, they are
not providing any useful insights. Even when exact closed-
form solutions exist, the complexity of this form often over-
shadows the elegance of the proposed solution. Furthermore,
likewise, difficulties in evaluating it numerically. This short-
coming motivates the research for a solution that is more
simple and elegant in deriving useful insights. The results
beyond variance i.e. the equation for skewness and kurtosis
are incorrectly stated in [11],[13], (Eq. 32 and Eq. 33 in
[15]),[14, 21] and other subsequently published works. The
conclusion drawn from these articles is highly incorrect. For
example, the skewness is incorrectly stated as

Skewness =
E [C3]− E3[C1]

(E [C2]− E2[C1])
3/2

(1)

which should be

Skewness =
E [C3]− 3E[C1]E [C2] + 2E3[C1]

(E [C2]− E2[C1])
3/2

(2)

while the kurtosis, which is given by

Kurtosis =
E[C4]− E4[C1]

(E[C2]− E2[C1])
2 (3)

is incorrectly stated, which should be

Kurtosis =
E[C4]− 4E[C1]E[C3] + 6E2[C1]E[C2]− 3E4[C1]

E[C2]− E2[C1]2
(4)

where, E is expectation operator
Cn = nth moment of Channel Capacity

As a consequence, most of the trends extrapolated from
these papers are incorrect. Also, we propose an exact closed-
form solution (without using identities i.e., the Fox H or
the Meijer- G functions) yet is simple, elegant, and likewise
easy to evaluate HOS of the CC over generalized distributions
where the exact closed-form solutions are ordinarily unattain-
able.

We develop several different new mathematical techniques
to address some of the shortcomings. Our approximation could
dramatically improve the accuracy and spectral efficiency of
the communication system. Specifically, in this paper, κ − µ
fading channel is considered as a generalized fading channel,
which incorporates many exceptional cases such as the Rician,
Nakagami-m, Rayleigh, and one-sided Gaussian distributions
and the expressions for the HOS of the CC are presented
in closed form. The above-mentioned performance metrics
can efficiently help select the best channel in heterogeneous
wireless networks with spectrum sharing and/or aggregation
capabilities.

The main contribution of this paper are as follows.
1) We present an accurate and efficient technique for com-

puting the desired HOS of CC with different types

of diversity combining methods. This will dramatically
simplify the calculation of CC since the nth moments
of the CC E[Cn] = [logn2 (1 + γ)] can be expressed as
the weighted sum of the moment generated function of
the signal to noise ratio and then invoke the multinomial
expansion prior averaging over the fading SNR statistics
over κ−µ fading environment. Our approximation could
dramatically improve the accuracy and spectral efficiency
of the communication system. Specifically, in this paper,
κ − µ fading channel is considered, as a generalized
fading model, which incorporates many special cases
such as the Rician, Nakagami-m, Rayleigh, and one-sided
Gaussian distributions and the expressions for the HOS
of the CC are presented in closed form. The performance
metrics above-mentioned can efficiently help to select
the best channel in heterogeneous wireless networks with
spectrum sharing and/or aggregation capabilities.

2) The equation for skewness and kurtosis are incorrectly
stated in [11],[13], (Eq. 32 and Eq. 33 in [15]),[14, 21].
The correct expressions for the same are presented in
this work. Thus, the proposed contribution is meaningful,
since it addresses to rectify the errors in computing the
HOS of the CC over generalized fading channels.

The remainder of this paper is organized as follows: Sec. II
describes the methodology. ?? considered system and channel
model. Sec. III is devoted to the derivation of the HOS of
the CC over κ − µ fading channels. The numerical results
and analysis are provided in the respective sections, while
concluding remarks are finally given in Sec. IV.

II. METHODOLOGY

A. Shannon Hartley’s Theorem

In data communication channel capacity C (in bit per
second) is the maximum rate at which data can be reliably
transmitted in terms of bit per second over a communication
channel. Shannon’s theorem describes the maximum bit- rate
that can be transmitted with an arbitrarily small bit-error
rate (BER) with a given signal power over a channel with
bandwidth B (in Hz) which is affected by additive white
gaussian noise (AWGN). The Eq. 5 is the Shannon-Hartley
Theorem.

C = B log2(1 + γ) (5)

where, C is the channel capacity in bit per second
B is the bandwidth in Hz
γ is the signal to noise ratio in terms of bit per second

B. Exponential - Type Approximations for logn2 (1 + γ)

In [22], Olabiyi presented an approach to approximate
the Gaussian probability integral Q(.) using the exponential
type of approximation. Borrowing this idea we approximate
the values of the coefficients ak and bk for n = [1,2,3,4]
and we have chosen N = [4,5,7,8,10,13,15,17,19] after an
extensively researching for the right number of terms for the
exponential type approximation of logn2 (1 + γ) as per Eq. 6
by splitting linear and nonlinear terms using least square error
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approximation (a) Least squared minimization of absolute
error (AMSE) and (b) Least square minimization of relative
error (RMSE).

logn2 (1 + γ) �
N∑

k=1

a(k,n)e
−(bk,n)γ (6)

where, n = power, N is the number of terms
ak and bk are the linear and non-linear coefficients we are
interested in approximating.

1) Splitting the Linear and Nonlinear Problems: MATLAB
provides several functions for solving non-linear least squares
problems. Older versions of MATLAB have one general=pur-
pose, multidimensional non-linear minimizer, fmins. In more
recent versions of MATLAB, fmins has been updated,
and its name changed to fminsearch. The Optimization
Toolbox provides additional capabilities, including a mini-
mizer for problems with constraints, fmincon, a minimizer
for unconstrained problems,fminunc, and two functions in-
tended specifically for non-linear least squares, lsqnonlin, and
lsqcurvefit.

Notice that the fitting problem is linear in the parameters
(a1,a2,· · · ,aN ). This means for any values of (b1,b2 ,· · · ,bN ),
we can use the backslash operator to find the values of
(a1,a2,· · · ,aN ) that solve the least-squares problem. We find
that choosing a bad starting point for the curve fitting using
the normal lsqcurvefit is a trivial task as it leads to a local
solution that is not globalchoosing a starting point with the
same bad (b1,b2,· · · ,bN ) values for the split two-parameter
problem leads to the global solution.

Separable least squares curve fitting problems involve both
linear and non-linear parameters. We could ignore the linear
portion and use lsqcurvefit to search for all the parameters.
However, if we take advantage of the separable structure,
We can rework the problem as a two-dimensional problem
and can search for the best values of non-linear parameters
(b1,b2,· · · ,bN ). A split problem is a more efficient and robust
technique to initial guess. With this approach, lsqcurvefit is
used to search for values of the non-linear parameters that
minimize the residual norm. The values of linear parameters
(a1,a2,· · · ,aN ) are calculated at each step using the backslash
operator.

2) Least squared minimization of absolute error (AMSE):
When n=1, the R.H.S of the Eq. 6 can be rewritten as ŷi in
the Eq. 7 to carry out error minimization. N on the L.H.S.
of the Eq. 6 is the number of terms used to approximate. The
Eq. 8 is the mean square criterion where, w is the sample data
size.

ŷi =

N∑
k=1

ake
−λkxi = a1e

−b1xi + · · · + aNe−bNxi (7)

MSE =
w∑
i=1

(yi − ŷi)
2 (8)

Since the dependence of ŷ on the coefficients ak is linear,
we may split the above nonlinear data fitting problem into

linear and nonlinear forms to improve robustness against
an improper selection of initial conditions (global vs. local
convergence).

Let us look at the linear optimization problem, To find the
optimum coefficients for the linear inverse problem (given
initial parameters b1, b2, · · · , bN ), we differentiate Eq. 9 w.r.t
ak and set it to 0.

dMSE

dak
= −2

w∑
i=1

(yi −
N∑

k=1

(ake
−bkxi))e−bkxi (9)

The Eq. 10 is in the vector form as,



y1
y2
...
yw



w×1

=




e−b1x1 · · · e−bNx1

e−b2x2 · · · e−bNx2

...
. . .

...
e−bwxw · · · e−bNxw



w×N

×




a1
a2
...

aN



N×1

↑ ↑ ↑
ydata T S

with w linear parameters S, and w nonlinear parameters bw.
To solve for the linear parameters C, we build a matrix A
where the N -th column of T is e(−bN×xdata), where, xdata
is a vector. Then we solve A×S = ydata for the linear least-
squares solution S, where ydata is the observed values of ŷi.

S = [T ]−1 × ydata (10)

3) Least squared minimization of relative error (RMSE):
To minimize the relative error, we have

MSE =

[∑w
i=1(yi −

∑N
k=1(ake

−bkxi))

yi

]2

(11)

Now after we differentiate Eq. 11 w.r.t ak and set it to 0
we get Eq. 12.

dMSE

dak
=

−2e−bkxi

yi

w∑
i=1

(1−
∑N

k=1(ake
−bkxi)

yi
) (12)

Thus,




1
1
...
1



w×1

=




e−b1x1

y1
· · · e−bNx1

y1

e−b2x2

y2
· · · e−bNx2

y2

...
. . .

...
e−bwxw

yw
· · · e−bNxw

yw



w×N

×




a1
a2
...

aN



N×1

↑ ↑ ↑
ydata P Q

Q = [P ]−1 × ydata (13)

with w linear parameters Q, and w nonlinear parameters bw.
To solve for the linear parameters C, we build a matrix P
where the N -th column of P is e(−bN×xdata), where, xdata
is a vector. Then we solve P ×Q = ydata for the linear least-
squares solution Q, where ydata is the observed values of
ŷi.
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4) Curve-fitting: In order to perform the curve fit on
method 1 and method 2, we select 4000 data points uniformly
distributed between the ranges −1 ≤ x ≤ 3, and subsequently
define γ = 10x (i.e.) 4000 non-uniformly distributed data
points in the linear scale. x=−1 : 0.001 : 3 γ = 0.1 → 1000,
n = Power, and N = Number of terms.

5) Multinomial Expansion: For n = 1, we recommend to
use initial guess as, x = [4e-14 13e-4 26e-4 85e-4 97e-4
17e-3 33e-3 66e-3 118e-3 12e-2 23e-2 4e-1 8e-1 1.46 1.47
2.35 2.84 2.93 3.05 ]. We obtain this seed value by using
multinomial expansion with n = 2 and N=7 which gives us
28 coefficients for a(k,n) and b(k,n) to start. For n = [2,3,4]
and and N = [4,5,7,8,10,13,15,17,19], we use multinomial
expansion theorem on Eq. 14 to get number of terms to get
the coefficients a(k,n) and b(k,n).

[
N∑

k=1

a(k,n)e
−b(k,n)γ

]n

(14)

We reuse Eq. 6 by replacing number of terms N by multino-
mial terms NM and get Eq. 15

Ĉ =

[
C

B

]n
= logn2 (1 + γ) �

NM∑
k=1

a(k,n)e
−b(k,n)γ (15)

The κ − µ distribution is a general fading distribution
that can be used to represent the small scale variation of
the fading signal in a LOS; it is written in terms of two
physical parameters, namely κ and µ with other classical
fading included in the κ − µ distribution as particular cases
[23].

MΩ(κ−µ)(s) =

(
µ(1 + κ)

µ(1 + κ) + sΩ

)µ

exp

(
−µκsΩ

µ(1 + κ) + sΩ

)

(16)
Shadowing occurs due to obstacles blocking the direct radio
path causing slow signal fluctuation. It is introduced in a LOS
multipath fading model in two primary ways. The first is based
on the assumption that the total power (W) is subjected to
random fluctuations, and the second relies on the assumption
that only the dominant component is subjected to random
fluctuations [24]. Moment generating function of the κ − µ

generalized fading distribution is given by Eq. 16 [23] in
the closed-form. We consider a receiver equipped with an
antenna array with the signals from the L i.n.d diversity paths
combined using a coherent MRC rule. The instantaneous SNR
at the output of the MRC combiner is simply the sum of the
instantaneous received SNRs from all the L i.n.d diversity
paths, viz.,

γMRC =

L∑
k=1

γk

Thus the MGF of MRC combiner output SNR is given
by Eq. 17 where L is diversity order. The Table I shows
the parameters for four branch diversity orders. In special
cases, when (κ=7 and µ=1) and (κ=0 and µ=1.5), κ-µ fading
distribution becomes Rician and Nakagami-m distribution,
respectively.

MγMRC
(s) =

L∏
k=1

Mγκ−µ(s) (17)

The expression for first four moment of channel capacity
E [C1], E [C2], E [C3], and E [C4] is obtained on substituting
n=1,2,3, and 4 respectively in Eq. 22.

TABLE I: Parameters for 4 branch Mγκ−µ
(s)

Kappa κ = [ 7; 0; 3; 2];
Mue µ = [ 1; 1.50; 2.5; 0.5];
(Diversity Order) wf = [ 1; 0.75; 1.5; 1];

C. Calculating channel capacity using Gauss-Hermite
quadrature

We present one another method to calculate the HOS of CC
using Semi-Infinite Gauss-Hermite Quadrature with 15 terms.
By substituting fγ(γ) with fγ(κ−µ)

(γ) from Eq. 18 on R.H.S
of Eq. 21 we obtain L.H.S of Eq. 21 where, G (n, b, a) is
expressed in Eq. 19. Using variable transformation on Eq. 19,
let aγ = y2 → dγ = 2ydy

a where, a=µ(1+κ)
Ω and b=µ−1

2 and
using N-point semi-infinite Gauss-Hermite quadrature [25] we
obtain Eq. 20.

fγκ−µ
(γ) =

µ
(

1+κ
Ω

)µ+1
2 γ

µ−1
2

κ
µ−1
2 exp(µκ)

exp
(
−µ(1+κ)γ

Ω

)
× Iµ−1

(
2µ

√
κ(1+κ)γ

Ω

)
(18)

G

(
n,

µ− 1

2
,
µ(1 + k)

Ω

)
=

∫ ∞

0

logn2 (1 + γ)γ
µ−1
2 exp

(
−µ(1 + k)γ

Ω

)
× Iµ−1

(
2µ

√
κ(1 + κ)γ

Ω

)
dγ (19)

where, G (n, b, a) �
2

ab+1

15∑
k=1

wklog
n
2

(
1 +

t2k
a

)
t2b+1
k × Ib+1

2b (2tk
√
kµ) and values for, wk and tk are mentioned in [25]

(20)

E
[
Ĉn

]
=

∫ ∞

0

logn2 (1 + γ)fγ(γ)dγ =
µ
(
1+k
Ω

)µ−1
2

k
µ−1
2 expµk

∫ ∞

0

logn2 (1 + γ)fγκ−µ(γ)dγ =
µ
(
1+k
Ω

)µ−1
2

k
µ−1
2 expµk

G

(
n,

µ− 1

2
,
µ(1 + k)

Ω

)

(21)

E
[
Ĉn

]
=

∫ ∞

0

logn2 (1 + γ)fγ(γ)dγ �
NM∑
k=1

a(k,n)

∫ ∞

0

e−b(k,n)γfγκ−µ
dγ �

NM∑
k=1

a(k,n)Mγ

(
b(k,n)

)
(22)
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III. APPLICATIONS OF EXPONENTIAL - TYPE
APPROXIMATIONS FOR logn2 (1 + γ) IN THE EVALUATION OF

HOS

A. On calculating nth moment of Channel Capacity

We observed that if one is only interested in the first
and second-order statistics of CC, then the coefficients a(k,n)
and b(k,n) obtained for logarithmic function exponential-type
approximation only require few terms from N=4 to N=7 and
it is quite adequate for getting accurate results using AMSE
with no computational complexity. AMSE is much better for
our application than RMSE, although RMSE is more preferred
over AMSE in general applications. We observe that RMSE
emphasizes the smaller SNR region while AMSE shows more
accurate fitting in the higher region of SNR. The primary rea-
son we get such trends is that CC is a logarithmic function and
logarithmic function is a monotonically increasing function
and fitting a sum of exponentials to measured data is generally
difficult numerically rather than the ill-conditioned problem
of applied data analysis known as the Prony approximation
[26]. However, while computing skewness and kurtosis using
logarithmic function exponential-type approximation, we faced
significant numerical issues in computing the curve-fitting task
as it involves solving matrix inversion of the system equations.
Also, as the number of terms grows, we find an issue finding
the initial seed value and the curve-fitting. One of the ways
to address this issue, we find that splitting linear and non-
linear terms for n=1 is entirely accurate. With this, we opt to
use multinomial expansion to find the coefficients a(k,n) and
b(k,n).

To circumvent this challenge, we observed that with n
= 1, the curve-fitting is more robust, and we can achieve
better approximation using multinomial expansion because
it eliminates the ambiguity of curve-fitting the data points.
Thus with this, we eliminate the need for coefficients a(k,n)
and b(k,n) from the curve-fitting for the logarithmic function
exponential-type approximation. The Figure 1 shows how
good our approximation is, and Table II shows how many
terms are required to perform HOS of CC lucidly.

TABLE II: Summary of minimum terms required to calculate
HOS of CC accurately using exponential-type approximation.

Error Number Normalized Normalized Normalized Normalized
Metrics of Terms Ergodic Variance Skewess Kurtosis

⇓ ⇒ Capacity Capacity Capacity Capacity

AMSE N = 4,5,7,10 13,15,17 15,17,19 19
Mn N = Not Required 7,8 10,13 15,17

RMSE N = 4,5,7,10 15,17 17,19 19 not enough
Mn N = Not Required 7,8 10,13 15,17

IV. CONCLUSION

We provide an accurate and efficient technique for comput-
ing the desired HOS of CC with different types of diversity
combining methods which dramatically improve the accuracy
and spectral efficiency of the communication system.

Using this techniques we can evaluate higher-order statistics
of error rate and/or channel capacity quite easily which

The performance metrics above-mentioned can efficiently
help to select the best channel in heterogeneous wireless net-
works with spectrum sharing and/or aggregation capabilities.
The derived results are novel and also are given in closed
form for general fading channels, as opposed to previously
published works. The correct expressions for the same are
presented in this paper. Thus, the proposed contribution is
meaningful, since it addresses to rectify the errors in com-
puting the HOS of the CC over generalized fading channels.
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