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Abstract—Vehicular Edge Computing (VEC) is a new leading
technology to enhance the vehicular performance through task
offloading where resource-confined vehicles offload their com-
puting task to the vehicular multi-access edge computing (MEC)
networks in proximity. However, the environment of vehicular
task offloading is extremely dynamic and faces some challenges
to determine the location of processing the offloaded task. As
a result, to achieve optimal performance by using traditional
VEC system is difficult because in advance we don’t know the
demand of vehicles. Therefore, a non-cooperative game theory-
based efficient task offloading (NGTO) scheme is proposed in
this study where the offloading decisions are taken either the
MEC server or remote cloud server through the game-theoretic
approach. To reduce the processing latency of the vehicles’
computation tasks and assure the maximum utility of each
vehicle, we used a distributed best response offloading strategy.
Our proposed strategy accommodates its offloading probability to
achieve a unique equilibrium under certain conditions. Detailed
performance evaluation affirms that our proposed NGTO scheme
can outperform in all scenarios. It can minimize the response time
at almost 41.2% and average task failure rate at approximately
56.3% when compared with a local roadside unit computing
(LRC) scheme. The reduced response time and task failure
rates are approximately 25.2% and 20.4%, respectively, when
compared with a collaborative (LRC with cloud via roadside
unit) offloading scheme.

Keywords—vehicular edge computing, game theory, task of-
floading, vehicular networks.

I. INTRODUCTION

With the evolution of intelligent vehicles and the emergence
of diverse high demanding vehicular applications such as
advanced driver assistance, accident warning, auto navigation,
natural language processing, and autonomous driving, are
employed to assist both passengers and drivers in a vehicular
environment [1]- [4]. For processing those delay constraints
computation-intensive applications usually need a lot of ex-
tensive computing resources. However, due to the resource-
constrained vehicles, it is hard to meet the computation
requirements to provide the quality-of-service (QoS) for the
above-mentioned applications. Therefore, the evolution of ve-
hicular networks is crying need to overcome these challenges
[5]. At present, VEC is considered as a promising solution [5],
[6]. By deploying lightweight but ubiquitous multi-access edge
computing (MEC) servers on nearby roadside units (RSUs),
excessive computation capabilities are provided for resource-

confined vehicles. To minimize the processing delay, moving
vehicles can easily offload their latency-sensitive computing
tasks to the nearest MEC server via RSU. Moreover, to
overcome the limitation of resource-constrained vehicles in ex-
ecuting computation-intensive applications, vehicle can offload
their computing tasks to the high-powered capability remote
cloud server via RSU [7].

Recently, the task offloading in VEC networks has gained
widespread attention from many researchers [1], [8]- [13].
To utilize the idle computational resources in dynamic ve-
hicular environments, an autonomous vehicular edge (AVE)
framework is introduced for task offloading [1]. The main
advantage of this framework is that without centralized control,
it can manage idle nearby vehicular resources to enhance the
computing capabilities of vehicles. In MEC-enabled vehicular
networks, Wang et al. [8] proposed the federated offload-
ing of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication to improve the utilization of computing
resources and minimize the total latency. For finding the
optimal server to process the offloaded tasks, Hossain et al.
[9] proposed a fuzzy decision based FTOM scheme. For
offloading delay-sensitive tasks, they preferred local or nearby
MEC servers and remote cloud server for resource-demanding
delay-tolerant tasks. To utilize the vehicle computing resource
and the VEC server, Zhang et al. [10] used a Stackelberg
game-theoretic approach for incentive-mechanism based task
offloading. Moreover, to share the computing resources, a
backup edge server was used in the neighborhood. In a multi-
user VEC network, Dai et al. [11] developed a low-complexity
JSCO algorithm and proposed an integrated load balancing
with an offloading scheme to maximize the system utility.
To utilize the idle edge resource and minimize the redundant
data, Nguyen et al. [12] proposed a cost-aware collaborative
task computing scheme in MEC-enabled internet of vehicles
(IoV) applications. Moreover, to enhance the vehicular per-
formance, Zhang et al. [13] introduced MEC-enabled fiber-
wireless (FiWi) networks. To achieve efficient task offloading,
authors proposed software-defined networking (SDN) based
load balancing approach.

Although, by using the MEC server to extend the com-
putation capacity of vehicular networks, it faces significant
challenges because of its confined resources capability. With-
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out any collaboration, a distinct MEC server cannot handle a
huge number of vehicle offloading requests. Therefore, it de-
grades the quality of vehicular performance. However, existing
research mostly focused on task offloading from the vehicle-
to-vehicle, vehicle to the nearest MEC server via RSU, vehicle
to the cloud server, and very few research work consider the
vehicle with the edge server collaboration. Moreover, they
considered static vehicle position or constant speed movement
for designing their vehicular mobility model while ignored
the enormous computing remote cloud resources [4]. For
filling the gap, by utilizing the nearby MEC servers and
powerful remote cloud computing resource, we design a game
theory-based cloud assisted MEC-enabled vehicular networks
which consider the task deadline constraint and a real-life
variable vehicle speed movement. To accomplish maximum
utility for each vehicle, our proposed scheme accommodates
its offloading probability to achieve a unique equilibrium. The
contribution of this study are summarized as follows:

• We investigate an efficient task offloading framework for
ensuring the QoS within the task deadline constraint in
the MEC-enabled vehicular network.

• We used vehicle to roadside unit (V2R) communication
mode for local RSU computing. Moreover, the task is
offloaded to the cloud via RSU to provide remote cloud
server supports.

• To assure the maximum utility of each vehicle, the NGTO
approach is proposed in multi-user vehicular networks.
Moreover, we adopt the game-theoretic based distributed
best response offloading strategy for making the decision
of task offloading.

• Finally, the experimental results validate the efficacy of
our proposed solution for reducing the response time and
task failure rate of navigation, danger assessment, and
infotainment applications.

The remaining parts of this paper are organized as fol-
lows. In Section II, we have described our proposed system
model and problem scenario. Moreover, a non-cooperative
game theory-based distributed task offloading algorithm is also
illustrated in this section. Afterward, we have carried out an
extensive evaluation of our proposed scheme in Section III.
Lastly, we conclude this paper in Section IV.

II. SYSTEM MODEL

A. Problem Scenario

Task offloading in dynamic multi-user vehicular networks
is still a challenging problem because of limited computing
resources and vehicle mobility issues. Fig. 1 shows such
scenarios, where RSU1 is overloaded due to many offloading
requests from the vehicles and it degrades the QoS. On the
other hand, RSU2 is lightly loaded. For example, fmax

i rep-
resents the maximum computing resource capability of MEC
server and vω1, vω2, ..., vωn represents the vehicle workload
received by the RSU1 from N vehicles. Then by using αi, we
can identify the difference between the capacity of the MEC
server and the total receives workload.

αi = fmax
i −

n∑
i=1

vωi (1)

If αi ≥ 0, then we can say that the MEC server has enough
computing resources to handle new offloading requests after
processing all the workloads received from the vehicles. On
the other hand, if αi < 0, then the MEC server will need
spare computing resources to execute the tasks because of
the server overloaded problem. In this situation, RSU1 can
forward the overloaded task to the nearby RSU2 or remote
cloud server. Therefore, it becomes a challenging problem
to decide which server is best for offloading the task. To
overcome the RSU1 overloaded problem and minimize the
response time, we have proposed an efficient task offloading
scheme where the decision of task offloading are taken through
a game-theoretic approach.

RSU1 RSU2

MEC MEC

Remote Cloud

Fig. 1. Overloaded problem in vehicular network.

B. Proposed Model

Fig. 2 shows our proposed multi-user MEC-enabled vehic-
ular networks architecture that consists of three layers named,
data generation vehicle layer, edge computing networks layer,
and remote cloud layer. In the data generation layer, the
vehicles are located. This layer is regarded as the first tier
of architecture. In the second layer, there are M RSUs are
placed which is named as the edge computing networks
layer for providing faster task computation. In the proposed
architecture, the RSUs are also connected to a metropolitan
area network (MAN) to share their computational capacity via
task migration. Finally, to provide centralized cloud computing
services, the traditional remote cloud server is located in the
third tier. We use a fiber communication link to access the
remote cloud resources from the RSUs.

The proposed model consist of a set of N vehicles as
N = {1, 2, 3, . . . , N}. Each vehicle has a set of computation
task T = {Ti|i = 1, 2, 3, . . . , T} and each task is represented
by the following, Ti = {di, ci, tmax

i }. For task Ti, di denotes
the input task size for the computation; ci is the required
computing resource to finish the computation task Ti; and tmax

i

represents the maximum processing latency that the task can
tolerate. Moreover, we consider a unidirectional road where
M RSUs are deployed equidistantly along the road having the
same coverage range, R. We denote the set of M RSUs as
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Fig. 2. The proposed MEC-enabled vehicular network.

M = {1, 2, 3, . . . ,M}, where {RSUi|i = 1, ...,M}. Each
RSU has 300 meters communication range and is equipped
with a single MEC server which has limited storage and
computing resources for processing tasks. For each MEC
server, MECi = {fmax

i , smax
i }, where fmax

i is the computing
resource capability of MECi, and smax

i is the local storage
capacity of MECi. We assume that each MECi server has
one host that operates four VMs. The resource capacity of
each VM is 10 giga instructions per second (GIPS). Based
on our model, the tasks can be executed either MEC server
or remote cloud server. In both cases, we can divide the total
processing time into two parts which are: task transmission
duration (the time which requires the vehicle to offload the
task) and task process duration (the time requires to process
the task). So the total processing time to offload and execute
the task Ti on the MEC server can be calculated as follows:

vtotali,mec = vtransi,mec + vexei,mec (2)

Where vtransi,mec is the transmission delay when ith vehicle
offloads their task to the MEC server for computing and vexei,mec

denotes the processing latency for executing the task on the
MEC server. The execution time vexei,mec can be calculated as
follows:

vexei,mec =
dt

fmec
(1− Umec) (3)

Here, dt is the size of the task, fmec and Umec are the
computation capability and utilization of the MEC server
respectively. On the other hand, when the task is processed
on the cloud server, we can calculate the total processing time
of the task as follows:

vtotali,cloud = vtransi,cloud + vexei,cloud (4)

Where vtransi,cloud is the transmission delay when ith vehicle
offloads their task to the cloud server for computing and
vexei,cloud denotes the processing time for executing the task on
the cloud. The execution time vexei,cloud can be calculated as
follows:

vexei,cloud =
dt

fcloud
(1− Ucloud) (5)

Here, fcloud and Ucloud are the computation capability and
average utilization of the cloud server.

C. Non Cooperative Game Theory Based Task Offloading

We used a non-cooperative game theory-based task offload-
ing approach for vehicular networks. To achieve the maximum
utility of each vehicle, our proposed NGTO algorithm is used
to adjust the task offloading probability which is given in
Algorithm 1. This algorithm uses the best response offloading
strategy to ensure that each vehicle can achieve a unique equi-
librium under certain conditions. The updated best response
offloading strategy is expressed as:

Oi =

[
vtotali,mec − vtotali,cloud

2pvi,max(1−
∏

i�=j(1− ιjOj))

]1
0

(6)

Where p indicates the pricing factor to decide either the
task will be offloaded to the remote cloud or the MEC server
by adjusting the degree of willingness. vi,max represents the
maximum delay that is produced by vehicle i for generating
the task. Moreover, ι represents the task arrival rate and the
operator

[
x
]1
0

can cause the probability Oi ∈ [0, 1].
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Algorithm 1 NGTO Algorithm
1: Initialization: vehicle index i, task arrival rate vector ι,

pricing vector p, offloading probability vector O.
2: for all task t ∈ T do
3: Estimate transmission delay vtransi,mec of tth task for

MEC offloading // Due to WLAN delay
4: Estimate transmission delay vtransi,cloud of tth task for

Cloud offloading // Due to WAN delay
5: vexei,mec = dt

fmec
(1 − Umec) // Execution time of ith

vehicle of task t on MEC server
6: vexei,cloud = dt

fcloud
(1− Ucloud) // Execution time of ith

vehicle of task t on Cloud server
7: vtotali,mec = vtransi,mec + vexei,mec // Calculate total processing

time of task on MEC server
8: vtotali,cloud = vtransi,cloud+ vexei,cloud // Calculate total process-

ing time of task on Cloud
9: Update the best-response offloading strategy:

Oi =

[
vtotal
i,mec−vtotal

i,cloud

2pvi,max(1−
∏

i �=j(1−ιjOj))

]1
0

10: end for
11: Vehicle i decides whether to offload its task with a

probability Oi

III. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of our proposed
NGTO scheme for MEC-enabled vehicular networks through
the EdgeCoudSim simulator [14]. To validate the performance
of different scenarios, our proposed scheme compared with
two existing task offloading schemes namely; local RSU
computing (LRC) and collaborative offloading between the
LRC and cloud via RSU. In the local RSU computing scheme,
the computation tasks of vehicles are offloaded to the MEC
server for processing which is located in nearby places. On the
other hand, in the case of the collaborative offloading scheme,
the offloaded tasks are processed between the LRC with a
remote cloud server via RSU.

A. Simulation Setup

During simulation, we consider a real-life scenario, which
has a 6 km length unidirectional road represented in Fig. 3.
We divide the road into segments. In each segment, the
vehicles have to maintain various speeds so that we can easily
differentiate the density of the traffic on the road. In this
simulation environment, we equidistantly deploy 20 RSUs
along the road and each RSU has 300 meters communication
range. A high-speed network infrastructure is built through
the conventional fiber network to connect all the RSUs. In this
experiment, we have used 1000 vehicles that are independently
and uniformly distributed to random locations. Moreover, we
have considered three different vehicle speeds for vehicular
networks scenarios such as 25, 50, and 100 km/h. For example,
the running speed of the vehicle is 25 km/h for the hotspot
locations that is represented by using blue color in Fig. 3.
Generally, the vehicles offload their computing tasks to the

nearby RSU as well as remote cloud via RSU. Based on Lin
et al.’s measurements for the vehicle to RSU communication
[15], in this study, we have used IEEE 802.11p protocol
WLAN to transmit the computation tasks between the vehicles
and the RSUs.

RSU1 RSU2 RSU20Number of RSUs:20

Road Length: 6km

RSU Coverage: 300 m
300 m

25 km/h

50 km/h

100 km/h

h

h

Speed of the vehicles for difeerent segments

300 m 300 m

Fig. 3. Vehicular mobility model for the simulation.

Moreover, to generate the different tasks, each vehicle run
three different applications during the experiments: navigation
application (NA), danger assessment application (DA), and
infotainment application (IA). Among them, navigation appli-
cation and danger assessment application are latency-sensitive,
and the infotainment application is latency-tolerant. In our
simulation, we employed a delay sensitivity value for differen-
tiating the sensitivity of various applications. We used a higher
value of delay sensitivity for latency-sensitive applications
and a lower value for latency-tolerant applications. Therefore,
we assigned 0.8 for the value of delay sensitivity of danger
assessment application and 0.25 for infotainment application.
The important simulation parameters and the key characteristic
parameters of different applications that are used during the
simulation are given in Table I and Table II respectively.

TABLE I
SIMULATION PARAMETERS

Parameters Value
Number of repetitions 100
Number of vehicles 1000
Number of RSUs 20

Network delay model MMPP/M/1 queue model
Number of VMs per RSU 4

Number of VMs per Cloud 20
VM processing speed per RSU 10 GIPS

VM processing speed in the Cloud 75 GIPS
Range of RSU (WLAN) 300 meters
WLAN/MAN bandwidth 10/1000 Mbps

WAN bandwidth 50 Mbps
WAN propagation delay 150 ms
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TABLE II
EXPERIMENTAL PARAMETERS FOR THREE APPLICATIONS

Parameters Application Types
Navigation Application Danger Assessment Application Infotainment Application

Usage (%) 30 35 35
Inter-arrival time of tasks (sec) 3 5 15

Maximum delay requirement (sec) 0.5 1 1.5
Delay sensitivity (sec) 0.5 0.8 0.25
Upload data size (KB) 20 40 20

Download data size (KB) 20 20 80
Average task length (GI) 3 10 20
RSU VM utilization (%) 6 20 40

Cloud VM utilization (%) 1.2 4 8

B. Simulation Results

To verify the importance of our proposed scheme, we
performed an experiment showing the average response time
with various numbers of vehicles which is shown in Fig. 4.
From Fig. 4, it is observed that in all three schemes, the
average response time tends to increase because of increasing
the number of vehicles and the LRC scheme provides more
response time than others. This is because of facing the con-
gestion by MEC server to handle a large number of vehicles.
When it comes to the collaborative and our proposed approach,
the task will distribute between the LRC and the cloud via
RSU. Therefore, the response time is not enhance compared to
the LRC scheme. For example, when the number of vehicles
is 500, then the response time for LRC, collaborative, and
our proposed schemes are 0.87, 0.68, and 0.51 s, respectively.
Therefore, by comparing with the other two approaches, our
introduced NGTO scheme provides a lower response time than
others. Because our proposed scheme can maximize the utility
of each vehicle than its competitors. Therefore, it can reduce
the average response time at almost 41.2% when compared
with the LRC scheme and 25.2% when compared with the
collaborative offloading scheme.
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Fig. 4. Average response time in terms of number of vehicles.

One of the significant performance criteria for offloading is
the task failure rate. If the VM utilization is too high, then the
task is difficult to handle and it will be failed. Fig. 5 shows

the effect of RSU VM capacity versus number of vehicles
for the above-mentioned three offloading schemes. During
the simulation, we employed four VMs in each MEC server.
Due to the confined VM capacity, the LRC scheme faces
congestion after 400 vehicles, collaborative scheme getting
congested after 500 vehicles, and our proposed NGTO scheme
can handle 1000 vehicles without congestion. Because of using
a non-cooperative game theory-based offloading approach, our
proposed scheme can utilize the MEC servers more efficiently
than its competitors.
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Fig. 5. Average failed task due to the RSU VM capacity.

Moreover, in Fig. 6, we investigate the average task failure
rate for various vehicles. If the system is lightly loaded, we
observe a lower task failure rate for all schemes. However,
the situation changes as the vehicle’s number increases. For
example, the task failure rate is rapidly increased from 0.57%
at 500 devices to 10.7% at 1000 devices in the LRC scheme;
from 0.28% at 500 devices to 5.9% at 1000 devices in the
collaborative scheme; and from 0.25% at 500 devices to 4.8%
at 1000 devices in our proposed NGTO scheme. Therefore,
after analyzing Fig. 6, our proposed NGTO scheme can reduce
at approximately 56.3% and 20.4% task failure rates when
compared with LRC and collaborative schemes respectively.
Because our proposed system makes better decisions to maxi-
mize the utility of each vehicle about sending the tasks to the
MEC servers as well as the remote cloud.
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Fig. 6. Average task failure rate for varying number of vehicles.

Finally, we have done another experiment to investigate the
impact of different vehicular speeds to measure the task failure
rate which is shown in Fig. 7. During the experiment, we have
used 500 vehicles. From analyzing Fig. 7, it is observed that,
when the average vehicular speed is lower, the task failure
rate is also lower in all schemes. But the situation is worse
when average vehicular speed increases. For example, when
the average vehicular speed is 100 km/h, the task failure
rate of LRC, collaborative, and our proposed NGTO schemes
are 0.63%, 0.47%, and 0.42% respectively. Throughout the
above analysis, we can conclude that our proposal outperforms
others.
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Fig. 7. Average task failure rate for different vehicular speed.

IV. CONCLUSION

Multi-access edge computing in vehicular networks is one of
the prominent thought where vehicles offload their computing
tasks to the RSU for rapid computation. However, one of
the challenging issues in dynamic vehicular networks is task
offloading where vehicles need to find out their efficient
strategies for offloading their task in real-time. In this paper,
we proposed a NGTO approach for efficient task offloading in
MEC-enabled vehicular networks. For making the decision of
task offloading, we used the game-theoretic based distributed
best response offloading strategy. Furthermore, to assure the

maximum utility of each vehicle under certain conditions,
our proposed scheme accommodates its offloading probability
to achieve a unique equilibrium. To evaluate our proposed
scheme, we used navigation, danger assessment, and infotain-
ment applications. Extensive simulation results affirm the best
performance of the proposed NGTO scheme for reducing the
response time and task failure rate in all scenarios compared
to local RSU computing and collaborative scheme.
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