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Abstract—Intelligent Transport System (ITS) provides an ef-
ficient solution to road safety traffic. To support safety appli-
cations, cellular vehicle-to-everything (C-V2X) is developed by
third generation partnership project (3GPP). C-V2X support
two modes of communication as mode 3 and mode 4. In mode
4, vehicles reserve the resources based on their local observa-
tions using semi-persistent scheduling (SPS). If two vehicles,
simultaneously select the same resources, it will lead to resource
contention. This arises the consensus problem. To overcome this,
in this paper we proposed the multi agent collaborative deep
reinforcement learning based scheme. A single deep Q network
(DQN) is trained for each zone. Each zone is preconfigured with
resources which constitute a resource pool. A reward function is
shared between the vehicles that belong to the same pool. This
approach makes the vehicles to collaborate rather than compete
in selecting the resources for their transmission. The proposed
scheme is compared with the random resource allocation in C-
V2X. The results show that the proposed scheme outperforms
even in dense vehicular environment.

Index Terms—Cellular vehicle-to-everything (C-V2X), Semi-
Persistent Scheduling (SPS), Distributed Resource Allocation,
Deep reinforcement Learning

I. INTRODUCTION

C-V2X is an emerging vehicular technology that support
critical safety applications and provide efficient transporta-
tion on the road. Dedicated short range communication also
known as IEEE802.11p was the first standard introduced
in 2010. IEEE802.11p is developed our IEEE802.11 WiFi
based technology for vehicular communication. To meet high
reliability and dynamic characteristics of vehicular environ-
ment, 802.11p based solutions are not satisfactory [1]. Usu-
ally, the remote evolutions offer system to vehicular corre-
spondences, which can accept a basic activity in capable
resource the board similarly as transportation for the provi-
sioning of quality-of-service (QoS) and quality-of-experience
(QoE). 3GPP is among the joining rules for strong corre-
spondences among Vehicles-to-Pedestrian (V2P), Vehicle-to-
Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and cutting-
edge Vehicle-to-Everything (V2X). The improvement in V2X
technologies require multiplexing resources across vehicular
frameworks. Regardless, the communication of remote cell
systems is somewhat costly regarding inertness for time basic
situations in a vehicular system. 3GPP is widely known
standard for LTE-V2V communication standard that provides

connectivity by exchanging messages with the LTE based
infrastructure.

In 2017, C-V2X was first introduced by 3GPP, in its release
Rel.14. C-V2X is developed over the LTE Rel.12 device-to-
device (D2D) module [2]. Two transmission modes are defined
in C-V2X as mode 3 and mode 4. Mode 3 operates in coverage
region i.e., vehicles are in the coverage range of enode B
(eNB), whereas mode 4 operates both in coverage and out
of coverage region. In mode 3 vehicles communicate over the
Uu interface. The eNB schedule the resources for vehicles to
communicate. In mode 4 vehicles communicate over the PC-
5 interface [2]. The resources are schedule by the vehicles
themselves for their transmission using SPS. [3].

SPS is prone to hidden node problem, as vehicles reserve
the resources based on their local observations. If two vehicles
select the same resources simultaneously, will lead to resource
collision which results in packet dropped due to interference
[4]. Therefore, the problem of resource contention should be
address. To improve the SPS algorithm, Yongseok et. al. [3]
proposed a mechanism based on three parts as explicit, early,
and repeated to enhance SPS. Vehicle will explicitly inform
other vehicles in its proximity upon resource selection to avoid
resource contention. The selection of resources is made earlier
before transmission to let other vehicles, know in advance.
This selection is also reserved for next transmissions for
multiple times depends upon the vehicle application. Xinxin
et. al. [4] proposed a short-term sensing (STS) based resource
allocation. However, if vehicles could not find the resources in
the short duration of time (i.e., having short sensing window)
will increase the latency to find the available resources.
Alessandro et. al. [5] optimized the parameters required for
resource allocation to support aperiodic messages. Fakhar et.
al. [6] proposed a hybrid scheme based on both IEEE 802.11p
and C-V2X technology for improving the end-to-end delay and
the reliability of the vehicular networks.

Reinforcement learning is embedded in various applications
for real time problem solving. Hao et. al. [7], [8] proposed
a decentralized resource allocation scheme based on deep
reinforcement learning to solve the latency problem of the
vehicular communication link. Here the vehicle will act as
an agent and based on the current channel condition the
agent will select the transmission power and frequency at
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each time slot. Oshri et. al. [9] proposed a deep-Q learning-
based dynamic resource allocation algorithm to improve the
network performance in multichannel wireless networks. Since
each vehicle is model as an agent, their proposed scheme is
computationally inefficient and not scalable.

Real systems are non-stationary, have safety constraints and
have negative effects of poor actions, unlike the simulated
environment. In this paper we have proposed the collaborative
deep reinforcement learning based mechanism for resource
selection in C-V2X to complement SPS mode 4. In our
scheme, the reward is shared with the vehicles belonging to the
same pool of resources to make the environment collaborative
rather than competitive. This will also mitigate the non-
stationary problem and since centralized training is performed,
the proposed scheme is robust and scalable. In the remainder of
this paper section II presents the system model. In section III
the deep reinforcement learning based mechanism is presented.
In section IV proposed scheme is evaluated and compared with
the random resource allocation mechanism in C-V2X. Finally,
the conclusion is drawn in section V.

II. SYSTEM MODEL

We consider M =
{
1, 2, 3, . . . ,M

}
vehicles, which share

the common pool of resources as shown in equation (1).
Resources are distributed in a pool over two dimensional
frequency and time space. Frequency domain is divided into
subchannels and time domain into subframes. In C-V2X
mode 4, vehicles communicate with each other over the PC-5
interface. For the exchange of cooperative awareness messages
(CAMs), vehicles reserve the resources for its transmission
from the pool. Data packets are transmitted over the physical
sidelink shared channel (PSSCH), whereas sidelink control
information (SCI) is transmitted across the each associated
data packet over physical sidelink control channel (PSCCH).
SCI carries information such as modulation coding symbols
(MCS) which assist in the decoding of data packet. Along
with MCS, SCI also carries additional information which assist
in SPS. The additional information include retransmission
counter (RC), received signal strength information (RSSI) and
resource reservation interval (RRI). RC indicates the remaining
number of times, the vehicle will perform next transmissions
on the periodically reserved slots after each RRI.

N = SF ∗ SC (1)

According to new standards set by the european telecom-
munication standard institute (ETSI) [10], [11], implies that
generation of CAMs is no more periodic. The generation of
CAM depends upon the vehicle speed, heading and direction.
From this it can be concluded that the already reserved slots
can increase the probability of collision for the aperiodic
CAMs transmission. This arises the consensus problem, where
vehicles based on their local observations select the resources
for their transmission. If two vehicles select the same resources
simultaneously, lead to resource contention. We model these
constraints into deep reinforcement learning in order to im-
prove the distributed SPS.

We assume that vehicles belonging to a common pool of
subchannels, approximate their neighbours position via neigh-
bor discovery as proposed by geo-based scheduling scheme
in [12]. Vehicles belonging to common pool of subchannels,
share their actions in order to avoid resource contention.
Moreover a reward function is shared between vehicles which
share the common pool of resources in order to increase the
capacity of each V2V link. Equation (2) shows the calculated
capacity, where B is the bandwidth of the channel and SINR
is the signal-to-interference-plus-noise ratio.

C = Blog2(1 + SINR) (2)

The SINR is given in equation (3), for a mth vehicle that wants
to transmit a packet. Pm is the mth vehicle transmitting power,
hm is the channel gain of V2V link, σ is the channel noise
and Pd is the interfering power from other vehicles in a same
pool.

SINR =
Pm ∗ hm

σ2 +
∑M

i=1 Pi ∗ hi

i�= m (3)

The reward is modelled in order to satisfy the latency con-
straint of the V2V link and to minimize the interference
between vehicles. The penalty is given to the vehicle if any
of the constraint is violated.

III. DEEP REINFORCEMENT LEARNING

Each vehicle is modelled as an agent. The state of the
environment observed by the vehicle consist of channel state
information Ct, channel gain Gt, RSSI , channel indices
occupied by the vehicles in the previous time slot from a
pool Nt−1, RC, number of bits to be transmitted by the
vehicle L and the latency associated with the generated
packet U . Vehicle chooses an action from the action space
set

{
23dBm, 10dBm, 5dBm

}
based on the current state.

Equation (4) shows the state representation.

St =
{
Gt, Ct, RSSI,RC,Nt−1, L, U

}
(4)

Equation (5), shows the reward function. It shows the sum
of capacities of V2V link and the penalty is given if latency
constraint is violated. In equation (5) λ is the weighting factor,
T0 is the maximum tolerable latency.

R =

M∑
i=1

Ci − λ(T0–U)

(5)

Equation (6), shows the discounted cumulative reward. Long
term rewards are given more preference rather than relying on
a greedy approach. β is in between [0,1], the more it is close
to 1, means future rewards are given more preference.

Rt =

∞∑
i=0

βirt

(6)

The state transitions are modelled using markov decision
process (MDP). The state transitions are generated by the
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simulation environment. The transition probability from one
state into other state depends upon the MDP.

The agent choose the action based on the Q-values. How-
ever, with large Q table i.e, having large action state pair, the
Q-values converge slowly to the optimum value. To alleviate
this, deep Q learning is considered. DQN maps the state to
an action instead of storing Q-values in look-up table. A
single DQN is trained for each pool. Vehicles that belong
to the same pool, share the reward function and access the
actions taken by the other vehicles. The reward function is
shared between vehicles, so that the vehicles collaborate to
increase the capacity of each V2V link rather than compete.
This parameter sharing approach in centralized training assist
favorable computation and is robust to large scale scenarios.

Environment

Target Network Evaluation Network

Experience Replay

Deep Neural Network

Update Weights

Loss Minimization

Freq

Time

Pool

Fig. 1. Deep Reinforcement Learning based Resource Selection in C-V2X

Deep Q networks (DQN) consist of neural network along
with the Q learning as shown in Fig 1. The evaluation and
target network is used for stabilize learning. The weights of
the Q network are updated after each iteration to reduce the
loss as given in equation (7).

loss =
{
(rt +Rt ∗max′

aQ
′(st

′, at
′)−Q(st, at))

}2
(7)

The intuition behind calculating the loss is to feedback through
backward propagation process and update the weights of the
neurons using gradient descent process. This can reduce the
loss and optimize the Q-values.

IV. PERFORMANCE EVALUATION

We considered a Manhattan grid scenario of 750X250m2. It
consist of 3 lanes urban scenario with both line of sight (LOS)
and non-line of sight (NLOS) channel model. The WINNER
+ B1 channel is considered for the evaluation. A deep neural
network is built with three hidden layers. Table I, shows the
hyper parameters and the detailed simulation parameters. DQN
is trained for thousands of episodes. The centralized training is
performed i.e., agents that belong to same pool of subchannels
shared the reward. Once the training is performed decentralize
distributed execution takes place.

Fig 2 shows the packet delivery ratio (PDR) with respect
to varying payload size. The number of vehicles are kept
20 and the message packet size is varied between 90-1500

TABLE I
SIMULATION PARAMETERS

Center frequency 5.9 GHz
No of hidden layers 3
α 0.001
Noise power −114dBm
Transmission delay budget 100ms
Channel WINNER+ B1
No of vehicles 20-200
Transmission power

{
23, 15, 5

}
dBm

message packet Size
{

90, 300, 450, 600, 900, 1200, 1500
}

Bytes

bytes. The number of resources are configured to the 25% less
than the number of vehicles. The collaborative multi agent
reinforcement learning (C-MARL) scheme overall performs
better than the random resource allocation. It is observed that
with the small packet size, the PDR acheived is more than
96% using C-MARL based scheme. The PDR decreases with
the increase of payload size as it results in large transmission
time which in turn increases the penalty. However with the
increase of payload size the PDR decreased but still it is quite
high as compared to random resource allocation scheme.
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Fig. 2. Impact of Payload Size on PDR

According to ETSI standards the generation of CAMs is
aperiodic in nature. Fig 3 shows the PDR with the increase
in number of vehicles. The resources are configured in a pool
to 35% less than the number of vehicles. The generation of
message data bytes are considered aperiodic in nature. It is
observed that as the number of vehicles are increased, the
PDR decreases in both schemes. However, the over all impact
of number of vehicles is less using C-MARL based scheme
as compare to random resource allocation scheme.

From Fig 4, it is observed that vehicles choose the power
level from the action space set

{
23dBm, 10dBm, 5dBm

}
for

their transmission. The agents learned and the probability of
selecting 23dBm is more in less congested scenarios. However,
in the congested scenarios, vehicles learn to choose low power
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Fig. 3. Impact of number of Vehicles on PDR

level for their transmission in order to avoid interference with
neighbour vehicles. Far vehicles learn to reuse the resources
for their transmission at low transmit power.
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Fig. 4. Probability of Power Selection with increase in number of vehicles

V. CONCLUSIONS

In this paper resource allocation problem in C-V2X is
modelled using deep reinforcement leaning. Based on their
geo-locations, vehicles which belong to same pool share the
reward and actions, to collaborate with neighbouring vehicles
in terms of resource selection. C-MARL based scheme is
compared with the random resource allocation in C-V2X. C-
MARL based scheme shows the performance satisfactory in
terms of PDR as compare to random resource allocation.
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