Disruption of alpha and low-beta functional brain networks in chronic stroke during affected body movements

Miseon Shim ^{1, 2}, Ga-Young Choi ², Nam-Jong Paik ³, Chaiyoung Lim ⁴, Won-Seok Kim ^{3*} and Han-Jeong Hwang ^{2, 5*}

- ¹ Institute of Industrial Technology, Korea University, Sejong, Korea
- ² Department of Electronics and Information, Korea University, Sejong, Korea
- ³ Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Korea
- ⁴ Bundang Rusk Rehabilitation Specialty Hospital, Seongnam-si, Gyeonggi-do, Korea
- ⁵ Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Korea

INTRODUCTION

- Motor impairment including upper extremity is most prominent symptom after stroke, and the motor impairment is associated with patients' abnormal brain activities.
- To address altered functional brain characteristics in stroke patients, electroencephalography (EEG)-based neurophysiological biomarkers have been investigated, such as event-related desynchronization (ERD) in alpha and low-beta frequency bands.
- However, it is not clearly discovered that mechanisms of brain networks involved in movements of stroke patients' affected bodies.
- The aim of this study is that we investigated abnormal functional brain characteristics of stroke patients when moving both their affected- and unaffected bodies in terms of not only ERD, but also brain network indices (strength, clustering coefficient, and path length).

Materials

- Subjects: 34 patients with chronic stroke (15 males; mean age, 60.9; age range, 29-80)
- Fugle-Meyer Assessment (FMA) score was obtained to evaluate a comprehensive motor impairments in stroke patients (range, 0-66).

Experimental paradigm

- The hand-extension movement was performed.
- A single trial consisted of a hand-extension movement of 3 s, followed by a relaxation of 5 s, which was iterated 10 times in a single session.
- A total of 8 sessions were performed (4 sessions affected hand movement; the other 4 sessions – unaffected hand movement).

Figure 1. Schematic diagram of the hand-movement task.

EEG recording and preprocessing

- EEG recoded during performing task using 32 channels Brain Products (sampling rate: 1,000 Hz, reference: FCz)
- Eyes-related artifacts were removed by Curry 7 software.
- Rejected artifacts (±100µV) and bandpass filtered rom 0.1 Hz to 55 Hz
- EEG data were segmented from -1 s to 3.5 s based on task onset

Event-related spectral perturbation (ERSP) analysis

- Individual alpha frequency (IAF) was computed using eyes-closed resting-state EEG data by detecting a maximum power peak between 7 Hz and 12 Hz at Oz channel.
- Based on IAF, alpha [8-12 Hz] and low-beta [12-20 Hz] ERDs were quantified using ERSP methods based on short-time Fourier transform.

Brain network analysis

- Phase-locking value (PLVs) was computed to use as adjacency matrix.
- Based on graph theory, four different network indices were evaluated strength, clustering coefficient, path length, and small-worldness.

Statistical analysis

- A two-way repeated measures analysis of variances (rmANOVA) was performed (with within-subject factors of the task and the hemisphere).
- A post-hoc paired *t*-test analysis was performed with adjusted two-side
 p-value using the false discovery rate (FDR) method.

RESULT

ERSP results

A. Alpha frequency band

A significantly stronger low-beta ERD was observed in the contralesional hemisphere, in comparison with that of the ipsilesional hemisphere for both the affected and unaffected hand-movement task.

Figure 2. Mean topographic maps and quantified low-beta event-related desynchronization (ERD) over all patients when performing the affected and the unaffected hand-movement tasks, respectively. **CON** means the intact contralesional hemisphere and **IPSI** indicates the damaged ipsilesional hemisphere.

Global-level network characteristics

Strength and clustering coefficient were significantly reduced, whereas a significantly enhanced path length was found during the affected handmovement task as compared to the unaffected hand-movement task.

Hemispheric-level network characteristics

• During both affected and unaffected hand-movement tasks, the contralesional brain network was more effective than the ipsilesional brain network for the three network indices (strength, clustering coefficient, and path length) in both alpha and low-beta frequency bands.

Figure 3. Comparison of the four network indices (strength, clustering coefficient, path length, and small-worldness) between the contralesional hemisphere (CON) and the ipsilesional hemisphere (IPSI) during the affected and unaffected hand-movement tasks, respectively.

Relationships with FMA score

• Alpha ipsilesional brain network indices estimated during the affected handmovement task were significantly correlated with the FMA scores.

CONCLUSION

• Differences in functional brain characteristics between both hemispheres could be explained from a compensatory mechanism to overcome impairments of stroke patients, verifying the possibility of use as a biological predictor for recovery after stroke.

ACKNOWLEDGEMENT

• This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1A4A1017775 and 2019R1I1A1A01063313).