Development of 82Sr/82Rb generator system for medical applications

Yeong Su Ha1, Minjung Kwon1, Sang-Pil Yoon1, Yong-Sub Cho1 and Kye-Ryung Kim1

1Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju, Republic of Korea

*E-mail: ysha19840704@kaeri.re.kr

Keywords: 82Sr, 82Rb, generator, myocardial perfusion imaging, proton accelerator

Nuclear imaging is one of the most powerful means available for non-invasive diagnosis of myocardial disease. Several radioisotopes are available for myocardial perfusion imaging. The most validated radioisotopes for the measurement of cardiac blood flow are: 15N, 15O, 99mTc, 201Tl and 82Rb. Among these radioisotopes, 82Rb and 99mTc can be conveniently obtained from a generator system. Especially, not only 82Rb as a positron emitter allows the full advantages of positron emission tomography (PET) such as image quantification with superior sensitivity, but also several reports have shown superior diagnostic performances of 82Rb-PET as compared to conventional 99mTc-single photon emission computed tomography (SPECT). Up to the present, since no history of the use of 82Rb radioisotope for research or medical purpose in Korea, Korea Atomic Energy Research Institute (KAERI) has plan to develop and supply 82Sr/82Rb generator system. Therefore, we optimized 82Sr purification procedure to produce certain purity of parent 82Sr radioisotope and developed 82Sr/82Rb generator including inlet, outlet, ion exchange column, and a thick shielding. A half dozen studies were performed to validate an optimized purification procedure. The results shows that not only superior recovery yield of Sr (96.97±1.67%) but also the low concentration of various impurities such as Rb (0.005±0.002%), Se (0.051±0.016%), Be (0.286±0.109%), and Fe (0.472±0.116%) are satisfied to meet appropriate specifications for final Sr product. Moreover, loading yields of Sr into the generator column show higher than 96% (96.36%), elution yields of Rb from the generator column show 14.4%. In future work, we plan to find satisfying elution conditions for higher elution yield in the generator system.

![Fig. 1. Results on the final yield of Sr and other impurities such as Rb, Se, Be, and Fe purified by an optimized procedure. (n = 6)](image)

Acknowledgments
This work was conducted as a part of R&D project (NRF-2017M2A2A6A05016601) and partially supported by the operation fund of KOMAC (Korea Multi-purpose Accelerator Complex) of the MSIT (Ministry of Science and ICT).