Theoretical Development of Soft and Hard Magnetic Materials and Characterization by Mössbauer Spectroscopy

Yang-Ki Hong

Professor and E. A. Larry Drummond Endowed Chair
Director of NSF IUCRC - UA: Center for Efficient Vehicles and Sustainable Transportation Systems
Department of Electrical and Computer Engineering and Materials Science Ph.D. Program
The University of Alabama, Tuscaloosa, Alabama 35487, USA
E-mail: ykhong@eng.ua.edu

Keywords: First-principles calculations, Magnetic moment, Magneto-crystalline Anisotropy, Curie temperature, Electric Vehicle, Mossbauer spectroscopy

Cars powered by internal combustion engines (ICEs) will be phased out to reduce fuel emissions, thereby addressing global warming and air pollution issues in the cities and improving fuel economy. J. P. Morgan recently reported that by 2030, the market share of electric vehicles (EVs) and hybrid electric vehicles (HEVs) would account for an estimated 60% of all cars [1]. In response to this trend, electric vehicles need compact, low-cost, lightweight electric motors’ high efficiency and corresponding power electronics.

Permanent and soft magnets constitute about 70% of an electric motor cost for an EV. Power electronics such as converter need high permeability and saturation magnetization of soft magnetic materials to save energy and reduce the power device’s size. This presentation will introduce theoretical methods to develop magnetic materials and Mossbauer characterization of permanent and soft magnetic materials. Lastly, future target properties of permanent and soft magnetic materials are suggested.


Acknowledgments
This work was in part supported by the E. A. Larry Drummond Endowment at the University of Alabama.