Preliminarily Study of PIPS based Beta Detector for 85Kr Analysis

Jinhyung Lee1, Mee Jang1, Min Sun Lee1, Hyuncheol Kim1, Jong-Myoung Lim1, and Wanno Lee2

1Environmental Radioactiviy Assessment Team, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
2Nuclear Safety and Security, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
1E-mail: petor@kaeri.re.kr

Keywords: Krypton analysis, Beta Spectroscopy, semiconductor detector, Monte Carlo simulation

One of the anthropogenic source of the radioactive noble gas 85Kr (beta emitter, E_{max}: 687 keV, half-life: 10.76 years) is nuclear-fuel reprocessing. It is significant to detect the nuclear activities of neighboring countries such as clandestine separation of plutonium for the preparation of nuclear weapons owing to chemically stable property of gas. Therefore, it is necessary to monitor of radioactivity of 85Kr in the atmosphere and to develop reliable method to analyze 85Kr. To determine the radioactivity of 85Kr in the atmosphere, usually, the optimized gas proportional counter made by a Bundesamt für Strahlenschutz - Institute of Atmospheric Radioactivity (BfS-IAR) has been used. However, it has a limit for the in-situ long term monitoring of nuclear activities because of P-10 gas change. In this study, we developed 85Kr monitoring system using the the Passivated Implanted Planar Silicon (PIPS) to replace the gas proportional counter. The PIPS detectors are widely used for alpha spectroscopy, radioxenon analysis, and gross alpha and beta analysis. However, 85Kr monitoring system using PIPS has not deveoped yet. We designed the system using Monte Carlo simulation, and demonstrated experimentally using 450 mm2 surface area and 500 µm thickness PIPS detector(PD-450-500, Mirion) and digitizer(DT-5730, Caen). 36Cl sources were used in the experiment because they emit beta energy similar to 85Kr radionuclide. Using a 36Cl (beta emitter, E_{max}: 710 keV, half-life: 301,300 years) source with 0.0979 µCi activity, measurement were made for 10,000 seconds at a distance of 5 mm from the PIPS detector and compared the the Monte Carlo simulations. Obtained by the simulation and experiment energy spectrums of 36Cl beta ray are well matched. From our results, we made sure of the possibility of 85Kr detection using PIPS and we will test 85Kr gas in the foreseeable future.

Fig. 1. 36Cl Energy spectrum of Monte Carlo simulation and PIPS detector experiment.

Acknowledgments
This work was supported by the Korea Foundation of Nuclear Safety (KoFONS) Grant funded by the Nuclear Safety and Security Commission (NSSC) (1705007-0420-SB110).