Preliminary DCGL\textsubscript{w} for Surface Soil of Kori-Unit 1 Considering to Habit Data of Representative Person

Se-Won Park* and Hee Reyoung Kim

Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
*E-mail: ycg03105@unist.ac.kr

Keywords: RESRAD-ONSITE, DCGL\textsubscript{w}, representative person, TEDE, exposure pathway

The preliminary DCGL\textsubscript{w} for the surface soil of Kori Unit-1 was calculated taking into account the habit data of residents living near the nuclear power plant in South Korea (1-y-old, 10-y-old child, and adult), following the ICRP 101a recommendation for radiation protection of the public to provide insight for the selection of human receptors. To calculate site-specific DCGL\textsubscript{w} for the surface soil of Kori Unit-1 by using the RESRAD-ONSITE, site-specific data must be obtained through a site characterization survey. However, until now, Kori Unit-1 has only been subjected to the historical site assessment (HSA), which is a non-radiological survey. The DCGL\textsubscript{w} was calculated by applying resident farmer scenario for conservative calculation. \(^{3}\text{H},^{14}\text{C},^{60}\text{Co},^{63}\text{Ni},^{90}\text{Sr},^{134}\text{Cs},^{137}\text{Cs}\) and \(^{241}\text{Pu}\) were assumed to be the radionuclides of interest. The available site-specific data were used to perform calculations that reflected the characteristics of the Kori Unit-1 site, and for the parameters for which the data were not available, the RESRAD default values and values specified in other documents specific to South Korea were considered. The sensitivity analyses were conducted using 2000 observations and 1 repetition. The Latin hypercube sampling (LHS) technique was used to sample the probability distributions for each stochastic input parameter. The correlated or uncorrelated grouping option and a random seed of 1000 were considered to maintain the prescribed correlation. As a result of the sensitivity analyses, the external gamma shielding factor, plant transfer factor for Sr, depth of roots, and density of the contaminated zone were identified as the sensitive parameters. The nuclides with significant difference from conservative DCGL\textsubscript{w} depending to age of human receptor were \(^{3}\text{H}\) (increment of 127.45% and 230.48% for child and adult, respectively), \(^{63}\text{Ni}\) (increment of 245.26% and 640.0% for child and adult, respectively) and \(^{90}\text{Sr}\) (increment of 99.25% for adult).

The main exposure pathway of these radionuclides were the food pathways. The conservative preliminary DCGL\textsubscript{w} of \(^{137}\text{Cs}\) and \(^{60}\text{Co}\), which is representative surrogate radionuclide was higher than Maine Yankee, but lower than Rancho Seco and Yankee Rowe.

![Fig. 1. DCGL\textsubscript{w} comparison of representative surrogate nuclides](image)

Acknowledgments

This work was supported by the ‘Development of integrated mobile radioactive contamination detection system’ of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (NO. 20171510300590).