Feasibility study on thermoluminescence measurement using a silicon photomultiplier for a portable TL system

Hyoungtaek Kim¹, Kyung Taek Lim², Jungil Lee¹

¹Korea Atomic Energy Research Institute, 989 Daeduk-ro, Daejeon 34057, Republic of Korea
²Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
*E-mail: kht84@kaeri.re.kr

Keywords: Silicon photomultiplier, photomultiplier tube, thermoluminescence, SNR, dose response

Replacing traditional vacuum tubes with semiconductor-based photo sensors provides a better solution for a portable TL reader due to their mechanical robustness, lower operation voltage, and lower production cost. In this work, feasibility tests of silicon photomultipliers (SiPMs) as a photodetector for thermoluminescence measurements (TL) were carried out. The TL reading were based on Hamamatsu S13360-MPPC series with a active area of $3 \times 3 \text{ mm}^2$ and microcell pitches from 25 μm to 75 μm. A conventional TL reader (Riso TL/OSL DA-20) was applied as a stable heating system and a test dose was given using a built-in beta source. A LiF:Mg,Cu,Si (MCS) was chosen as a reference TL material to exhibit well known TL responses. The results showed that the typical TL glow curves can be obtained with SiPMs, despite their lower geometric efficiencies. For a given dose range from 6 to 66 mGy, a higher linearity was confirmed in SiPMs with three different threshold levels compared to the build-in PMT. The detection limits was around 0.2 mSv, 0.08 mSv, and 0.17 mSv for 25 μm, 50 μm, and 75 μm SiPMs, respectively. A sensitivity change of the system and sensor temperature depending on sequential TL readings was monitored. Consequently, possible advantages and dis-advantages of SiPM-based TL measurements in comparison to PMT-based TL measurements were discussed.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No.2017M2A8A4015255) and the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No.1803014) and Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (2019-0-00831).